Multichannel Blind Deconvolution Using the Conjugate Gradient

被引:0
|
作者
Bin Xia [1 ]
机构
[1] Tongji Univ, Dept Elect Engn, Shanghai 200065, Peoples R China
关键词
Blind deconvolution; Natural gradient; Conjugate gradient; IDENTIFICATION; EQUALIZATION; SEPARATION; SYSTEMS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a conjugate gradient based algorithm for blind deconvolution. In general, blind deconvolution algorithms suffer from the speed of convergence. We make a further study of the geometrical structures on the manifold of finite impulse response (FIR) filters using lie group method. We derive the expressions of geodesic and parallel translation on the manifold of FIR filters. Using mutual information criteria. a feasible cost function is derived for blind deconvolution problem. Then we develop a conjugate gradient algorithm for multichannel blind deconvolution problem in finite impulse response (FIR) manifold. Computer simulations show the validity and effectiveness of this approach.
引用
收藏
页码:612 / 620
页数:9
相关论文
共 50 条
  • [1] Multichannel blind deconvolution and equalization using the natural gradient
    Amari, S
    Douglas, SC
    Cichocki, A
    Yang, HH
    FIRST IEEE SIGNAL PROCESSING WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS, 1997, : 101 - 104
  • [3] An alternative natural gradient approach for multichannel blind deconvolution
    Tomassoni, M
    Squartini, S
    Piazza, F
    2005 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), VOLS 1-6, CONFERENCE PROCEEDINGS, 2005, : 5742 - 5745
  • [4] Natural gradient multichannel blind deconvolution and speech separation using causal FIR filters
    Douglas, SC
    Sawada, H
    Makino, S
    IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, 2005, 13 (01): : 92 - 104
  • [5] Natural gradient multichannel blind deconvolution and source separation using causal FIR filters
    Douglas, SC
    Sawada, H
    Makino, S
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL V, PROCEEDINGS: DESIGN AND IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS INDUSTRY TECHNOLOGY TRACKS MACHINE LEARNING FOR SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING SIGNAL PROCESSING FOR EDUCATION, 2004, : 477 - 480
  • [6] Exact Recovery of Multichannel Sparse Blind Deconvolution via Gradient Descent
    Qu, Qing
    Li, Xiao
    Zhu, Zhihui
    SIAM JOURNAL ON IMAGING SCIENCES, 2020, 13 (03): : 1630 - 1652
  • [7] Sparse multichannel blind deconvolution
    Kazemi, Nasser
    Sacchi, Mauricio D.
    GEOPHYSICS, 2014, 79 (05) : V143 - V152
  • [8] Contrasts for multichannel blind deconvolution
    Comon, P
    IEEE SIGNAL PROCESSING LETTERS, 1996, 3 (07) : 209 - 211
  • [9] Multichannel Blind Deconvolution using Low Rank Recovery
    Romberg, Justin
    Tian, Ning
    Sabra, Karim
    INDEPENDENT COMPONENT ANALYSES, COMPRESSIVE SAMPLING, WAVELETS, NEURAL NET, BIOSYSTEMS, AND NANOENGINEERING XI, 2013, 8750
  • [10] Multichannel blind seismic deconvolution using dynamic programming
    Heimer, Alon
    Cohen, Israel
    SIGNAL PROCESSING, 2008, 88 (07) : 1839 - 1851