Multichannel Blind Deconvolution Using the Conjugate Gradient

被引:0
|
作者
Bin Xia [1 ]
机构
[1] Tongji Univ, Dept Elect Engn, Shanghai 200065, Peoples R China
关键词
Blind deconvolution; Natural gradient; Conjugate gradient; IDENTIFICATION; EQUALIZATION; SEPARATION; SYSTEMS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a conjugate gradient based algorithm for blind deconvolution. In general, blind deconvolution algorithms suffer from the speed of convergence. We make a further study of the geometrical structures on the manifold of finite impulse response (FIR) filters using lie group method. We derive the expressions of geodesic and parallel translation on the manifold of FIR filters. Using mutual information criteria. a feasible cost function is derived for blind deconvolution problem. Then we develop a conjugate gradient algorithm for multichannel blind deconvolution problem in finite impulse response (FIR) manifold. Computer simulations show the validity and effectiveness of this approach.
引用
收藏
页码:612 / 620
页数:9
相关论文
共 50 条
  • [41] Deterministic teciiniques for multichannel blind image deconvolution
    Souidene, W
    Abed-Meraim, K
    Beghdadi, A
    ISSPA 2005: THE 8TH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, VOLS 1 AND 2, PROCEEDINGS, 2005, : 439 - 442
  • [42] Estimating function approach to multichannel blind deconvolution
    Zhang, L
    Amari, S
    Cichocki, A
    2000 IEEE ASIA-PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS: ELECTRONIC COMMUNICATION SYSTEMS, 2000, : 587 - 590
  • [43] Generalized quadratic minimization and blind multichannel deconvolution
    Gorokhov, A
    Stoica, P
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (01) : 201 - 213
  • [44] Multichannel blind deconvolution of transient impulsive signals
    Lecumberri, P.
    Gomez, M.
    Carlosena, A.
    2006 IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE PROCEEDINGS, VOLS 1-5, 2006, : 1145 - +
  • [45] SUB-NYQUIST MULTICHANNEL BLIND DECONVOLUTION
    Mulleti, Satish
    Lee, Kiryung
    Eldar, Yonina C.
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 5454 - 5458
  • [46] Identifiability Conditions for Compressive Multichannel Blind Deconvolution
    Mulleti, Satish
    Lee, Kiryung
    Eldar, Yonina C.
    IEEE Transactions on Signal Processing, 2020, 68 : 4627 - 4642
  • [47] A fast algorithm for sparse multichannel blind deconvolution
    Nose-Filho, Kenji
    Takahata, Andre K.
    Lopes, Renato
    Romano, Joao M. T.
    GEOPHYSICS, 2016, 81 (01) : V7 - V16
  • [48] Identifiability Conditions for Compressive Multichannel Blind Deconvolution
    Mulleti, Satish
    Lee, Kiryung
    Eldar, Yonina C.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 4627 - 4642
  • [49] Cascade neural networks for multichannel blind deconvolution
    Choi, S
    Cichocki, A
    ELECTRONICS LETTERS, 1998, 34 (12) : 1186 - 1187
  • [50] Blind deconvolution by using phase spectral constraints and natural gradient
    Uchino, Eiji
    Suetake, Noriaki
    Sakano, Morihiko
    IEICE ELECTRONICS EXPRESS, 2005, 2 (09): : 316 - 320