Komlós properties in Banach lattices

被引:0
|
作者
E. Y. Emelyanov
N. Erkurşun-Özcan
S. G. Gorokhova
机构
[1] Middle East Technical University,Department of Mathematics
[2] Hacettepe University,Department of Mathematics
[3] Sobolev Institute of Mathematics,undefined
来源
Acta Mathematica Hungarica | 2018年 / 155卷
关键词
Banach lattice; −convergence; −convergence; -convergence; Komlós property; Komlós set; space of continuous functions; 46B42;
D O I
暂无
中图分类号
学科分类号
摘要
Several Komlós like properties in Banach lattices are investigated. We prove that C(K) fails the oo\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${oo}$$\end{document}-pre-Komlós property, assuming that the compact Hausdorff space K has a nonempty separable open subset U without isolated points such that every u∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\in}$$\end{document}U has countable neighborhood base. We prove also that, for any infinite dimension al Banach lattice E, there is an unbounded convex uo-pre-Komlós set C⊆E+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\subseteq E_{+}}$$\end{document} which is not uo-Komlós.
引用
收藏
页码:324 / 331
页数:7
相关论文
共 50 条
  • [41] Duality properties for b-AM-compact operators on Banach lattices
    Na Cheng
    Zi-Li Chen
    Guang-Gui Chen
    Mathematical Notes, 2013, 93 : 465 - 469
  • [42] Free complex Banach lattices
    de Hevia, David
    Tradacete, Pedro
    JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 284 (10)
  • [43] ON DISPERSIVE OPERATORS IN BANACH LATTICES
    SATO, KI
    PACIFIC JOURNAL OF MATHEMATICS, 1970, 33 (02) : 429 - &
  • [44] Interpolation of weighted Banach lattices
    Cwikel, M
    Nilsson, PG
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 165 (787) : 1 - 105
  • [45] POSITIVE PROJECTIONS IN BANACH LATTICES
    TZAFRIRI, L
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (01): : 172 - &
  • [46] Weak precompactness in Banach lattices
    Xiang, Bo
    Chen, Jinxi
    Li, Lei
    POSITIVITY, 2022, 26 (01)
  • [47] BANACH-LATTICES AND CYCLIC BANACH-SPACES
    SCHAEFER, HH
    PROCEEDINGS OF THE ROYAL IRISH ACADEMY SECTION A-MATHEMATICAL AND PHYSICAL SCIENCES, 1974, A 74 (18-3) : 283 - 289
  • [48] GROTHENDIECK BANACH-LATTICES
    TOKAREV, EV
    SIBERIAN MATHEMATICAL JOURNAL, 1986, 27 (02) : 293 - 298
  • [49] SEPARABLE UNIVERSAL BANACH LATTICES
    Leung, Denny H.
    Li, Lei
    Oikhberg, Timur
    Tursi, Mary Angelica
    ISRAEL JOURNAL OF MATHEMATICS, 2019, 230 (01) : 141 - 152
  • [50] Sequence spaces on Banach lattices
    Botelho, Geraldo
    Causey, Ryan
    Navoyan, Khazhak V.
    RECENT TRENDS IN OPERATOR THEORY AND APPLICATIONS, 2019, 737 : 1 - 24