Komlós properties in Banach lattices

被引:0
|
作者
E. Y. Emelyanov
N. Erkurşun-Özcan
S. G. Gorokhova
机构
[1] Middle East Technical University,Department of Mathematics
[2] Hacettepe University,Department of Mathematics
[3] Sobolev Institute of Mathematics,undefined
来源
Acta Mathematica Hungarica | 2018年 / 155卷
关键词
Banach lattice; −convergence; −convergence; -convergence; Komlós property; Komlós set; space of continuous functions; 46B42;
D O I
暂无
中图分类号
学科分类号
摘要
Several Komlós like properties in Banach lattices are investigated. We prove that C(K) fails the oo\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${oo}$$\end{document}-pre-Komlós property, assuming that the compact Hausdorff space K has a nonempty separable open subset U without isolated points such that every u∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\in}$$\end{document}U has countable neighborhood base. We prove also that, for any infinite dimension al Banach lattice E, there is an unbounded convex uo-pre-Komlós set C⊆E+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\subseteq E_{+}}$$\end{document} which is not uo-Komlós.
引用
收藏
页码:324 / 331
页数:7
相关论文
共 50 条
  • [21] IDEAL PROPERTIES OF REGULAR OPERATORS BETWEEN BANACH-LATTICES
    KALTON, NJ
    SAAB, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1983, 296 (14): : 593 - 595
  • [22] The order properties of r-compact operators on Banach lattices
    Chen, Zi Li
    Wickstead, A. W.
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (03) : 457 - 466
  • [23] Some properties of the space of regular operators on atomic Banach lattices
    Qingying Bu
    Yongjin Li
    Xiaoping Xue
    Collectanea mathematica, 2011, 62 : 131 - 137
  • [24] Nonlinear functionals on Banach lattices satisfying disjointness preserving properties
    William Feldman
    Positivity, 2022, 26
  • [25] Disjoint Dunford-Pettis-Type Properties in Banach Lattices
    Botelho, Geraldo
    Luiz, Jose Lucas P.
    Miranda, Vinicius C. C.
    QUARTERLY JOURNAL OF MATHEMATICS, 2024, 75 (02): : 549 - 562
  • [26] Some properties of the space of regular operators on atomic Banach lattices
    Bu, Qingying
    Li, Yongjin
    Xue, Xiaoping
    COLLECTANEA MATHEMATICA, 2011, 62 (02) : 131 - 137
  • [27] COMPACTNESS PROPERTIES FOR POSITIVE SEMIGROUPS ON BANACH-LATTICES AND APPLICATIONS
    MOKHTARKHARROUBI, M
    HOUSTON JOURNAL OF MATHEMATICS, 1991, 17 (01): : 25 - 38
  • [28] Relations and Radicals in Abstract Lattices and in Lattices of Subspaces of Banach Spaces and of Ideals of Banach Algebras. Amitsur's Theory Revisited
    Kissin, Edward
    Shulman, Victor
    Turovskii, Yuri
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2021, 38 (01): : 143 - 201
  • [29] Relations and Radicals in Abstract Lattices and in Lattices of Subspaces of Banach Spaces and of Ideals of Banach Algebras. Amitsur’s Theory Revisited
    Edward Kissin
    Victor Shulman
    Yuri Turovskii
    Order, 2021, 38 : 143 - 201
  • [30] Mean ergodicity on Banach lattices and Banach spaces
    Eduard Yu. Emel’yanov
    Manfred P.H. Wolff
    Archiv der Mathematik, 1999, 72 : 214 - 218