Komlós properties in Banach lattices

被引:0
|
作者
E. Y. Emelyanov
N. Erkurşun-Özcan
S. G. Gorokhova
机构
[1] Middle East Technical University,Department of Mathematics
[2] Hacettepe University,Department of Mathematics
[3] Sobolev Institute of Mathematics,undefined
来源
Acta Mathematica Hungarica | 2018年 / 155卷
关键词
Banach lattice; −convergence; −convergence; -convergence; Komlós property; Komlós set; space of continuous functions; 46B42;
D O I
暂无
中图分类号
学科分类号
摘要
Several Komlós like properties in Banach lattices are investigated. We prove that C(K) fails the oo\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${oo}$$\end{document}-pre-Komlós property, assuming that the compact Hausdorff space K has a nonempty separable open subset U without isolated points such that every u∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\in}$$\end{document}U has countable neighborhood base. We prove also that, for any infinite dimension al Banach lattice E, there is an unbounded convex uo-pre-Komlós set C⊆E+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\subseteq E_{+}}$$\end{document} which is not uo-Komlós.
引用
收藏
页码:324 / 331
页数:7
相关论文
共 50 条
  • [1] Komls properties in Banach lattices
    Emelyanov, E. Y.
    Erkursun-Ozcan, N.
    Gorokhova, S. G.
    ACTA MATHEMATICA HUNGARICA, 2018, 155 (02) : 324 - 331
  • [2] Some approximation properties of Banach spaces and Banach lattices
    Tadeusz Figiel
    William B. Johnson
    Aleksander Pełczyński
    Israel Journal of Mathematics, 2011, 183
  • [3] Some approximation properties of Banach spaces and Banach lattices
    Figiel, Tadeusz
    Johnson, William B.
    Pelczynski, Aleksander
    ISRAEL JOURNAL OF MATHEMATICS, 2011, 183 (01) : 199 - 231
  • [4] Monotonicity and rotundity properties in Banach lattices
    Hudzik, H
    Kaminska, A
    Mastylo, M
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2000, 30 (03) : 933 - 950
  • [5] Positive Approximation Properties of Banach Lattices
    Chen, Dongyang
    TAIWANESE JOURNAL OF MATHEMATICS, 2018, 22 (03): : 617 - 633
  • [6] Separation properties for Carleman operators on Banach lattices
    Feldman, W
    POSITIVITY, 2003, 7 (1-2) : 41 - 45
  • [7] Separation properties for Carleman operators on Banach Lattices
    William Feldman
    Positivity, 2003, 7 : 41 - 45
  • [8] OPERATOR PROPERTIES OF ATOMIC BANACH-LATTICES
    POPA, I
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 283 (15): : 1013 - 1015
  • [9] Monotonicity Properties of Banach Lattices and Their Applications - a Survey
    Foralewski, Pawel
    Hudzik, Henryk
    Kowalewski, Wojciech
    Wisla, Marek
    ORDERED STRUCTURES AND APPLICATIONS, 2016, : 203 - 232
  • [10] Monotonicity Properties and Order Smoothness in Banach Lattices
    Aleksandrowicz, Karol
    Markowicz, Joanna
    Prus, Stanislaw
    RESULTS IN MATHEMATICS, 2025, 80 (03)