D-branes;
Differential and Algebraic Geometry;
Conformal Field Models in String Theory;
Superstring Vacua;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The theory of coverings of the two-dimensional torus is a standard part of algebraic topology and has applications in several topics in string theory, for example, in topological strings. This paper initiates applications of this theory to the counting of orbifolds of toric Calabi-Yau singularities, with particular attention to Abelian orbifolds of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ {\mathbb{C}^D} $\end{document}. By doing so, the work introduces a novel analytical method for counting Abelian orbifolds, verifying previous algorithm results. One identifies a p-fold cover of the torus \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ {\mathbb{T}^{D - 1}} $\end{document} with an Abelian orbifold of the form \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ {{{{\mathbb{C}^D}}} \left/ {{{\mathbb{Z}_p}}} \right.} $\end{document}, for any dimension D and a prime number p. The counting problem leads to polynomial equations modulo p for a given Abelian subgroup of SD, the group of discrete symmetries of the toric diagram for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ {\mathbb{C}^D} $\end{document}. The roots of the polynomial equations correspond to orbifolds of the form \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ {{{{\mathbb{C}^D}}} \left/ {{{\mathbb{Z}_p}}} \right.} $\end{document}, which are invariant under the corresponding subgroup of SD. In turn, invariance under this subgroup implies a discrete symmetry for the corresponding quiver gauge theory, as is clearly seen by its brane tiling formulation.
机构:
Univ Paris 07, UFR Math, Inst Math Jussieu, UMR 7586,CNRS, F-75251 Paris 05, FranceUniv Paris 07, UFR Math, Inst Math Jussieu, UMR 7586,CNRS, F-75251 Paris 05, France
Keller, Bernhard
Reiten, Idun
论文数: 0引用数: 0
h-index: 0
机构:
Norges Tekn Naturvitenskapelige Univ, Inst Matemat Fag, N-7491 Trondheim, NorwayUniv Paris 07, UFR Math, Inst Math Jussieu, UMR 7586,CNRS, F-75251 Paris 05, France
机构:
Korea Adv Inst Sci & Technol, Taejon 305701, South KoreaKorea Adv Inst Sci & Technol, Taejon 305701, South Korea
Ruan, Wei-Dong
Zhang, Yuguang
论文数: 0引用数: 0
h-index: 0
机构:
Korea Adv Inst Sci & Technol, Taejon 305701, South Korea
Capital Normal Univ, Beijing, Peoples R ChinaKorea Adv Inst Sci & Technol, Taejon 305701, South Korea