Calabi-Yau orbifolds and torus coverings

被引:0
|
作者
Amihay Hanany
Vishnu Jejjala
Sanjaye Ramgoolam
Rak-Kyeong Seong
机构
[1] Imperial College London,Theoretical Physics Group, The Blackett Laboratory
[2] University of London,Department of Physics, Queen Mary
[3] Kyoto University,Yukawa Institute for Theoretical Physics
关键词
D-branes; Differential and Algebraic Geometry; Conformal Field Models in String Theory; Superstring Vacua;
D O I
暂无
中图分类号
学科分类号
摘要
The theory of coverings of the two-dimensional torus is a standard part of algebraic topology and has applications in several topics in string theory, for example, in topological strings. This paper initiates applications of this theory to the counting of orbifolds of toric Calabi-Yau singularities, with particular attention to Abelian orbifolds of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathbb{C}^D} $\end{document}. By doing so, the work introduces a novel analytical method for counting Abelian orbifolds, verifying previous algorithm results. One identifies a p-fold cover of the torus \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathbb{T}^{D - 1}} $\end{document} with an Abelian orbifold of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{{{\mathbb{C}^D}}} \left/ {{{\mathbb{Z}_p}}} \right.} $\end{document}, for any dimension D and a prime number p. The counting problem leads to polynomial equations modulo p for a given Abelian subgroup of SD, the group of discrete symmetries of the toric diagram for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathbb{C}^D} $\end{document}. The roots of the polynomial equations correspond to orbifolds of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{{{\mathbb{C}^D}}} \left/ {{{\mathbb{Z}_p}}} \right.} $\end{document}, which are invariant under the corresponding subgroup of SD. In turn, invariance under this subgroup implies a discrete symmetry for the corresponding quiver gauge theory, as is clearly seen by its brane tiling formulation.
引用
收藏
相关论文
共 50 条
  • [31] ON COLLAPSING CALABI-YAU FIBRATIONS
    Li, Yang
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2021, 117 (03) : 451 - 483
  • [32] Calabi-Yau threefolds with boundary
    Donaldson, Simon
    Lehmann, Fabian
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2025, 21 (03) : 1119 - 1170
  • [33] On generalized Calabi-Yau nilmanifolds
    Catellani, Giulio
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2008, 187 (01) : 39 - 57
  • [34] On generalized Calabi-Yau nilmanifolds
    Giulio Catellani
    Annali di Matematica Pura ed Applicata, 2008, 187 : 39 - 57
  • [35] Calabi-Yau algebras and their deformations
    He, Ji-Wei
    Van Oystaeyen, Fred
    Zhang, Yinhuo
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2013, 56 (03): : 335 - 347
  • [36] Calabi-Yau manifolds from pairs of non-compact Calabi-Yau manifolds
    Lee, Nam-Hoon
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (04):
  • [37] Quantum McKay Correspondence for Disc Invariants of Toric Calabi-Yau 3-orbifolds
    Ke, Hua-Zhong
    Zhou, Jian
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2015, 31 (01) : 29 - 34
  • [38] Numerical Calabi-Yau metrics
    Douglas, Michael R.
    Karp, Robert L.
    Lukic, Sergio
    Reinbacher, Rene
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (03)
  • [39] Quantum McKay correspondence for disc invariants of toric Calabi-Yau 3-orbifolds
    Hua-Zhong Ke
    Jian Zhou
    Acta Mathematica Sinica, English Series, 2015, 31 : 29 - 34
  • [40] On noncommutative Calabi-Yau hypersurfaces
    Belhaj, A
    Saidi, EH
    PHYSICS LETTERS B, 2001, 523 (1-2) : 191 - 198