Calabi-Yau orbifolds and torus coverings

被引:0
|
作者
Amihay Hanany
Vishnu Jejjala
Sanjaye Ramgoolam
Rak-Kyeong Seong
机构
[1] Imperial College London,Theoretical Physics Group, The Blackett Laboratory
[2] University of London,Department of Physics, Queen Mary
[3] Kyoto University,Yukawa Institute for Theoretical Physics
关键词
D-branes; Differential and Algebraic Geometry; Conformal Field Models in String Theory; Superstring Vacua;
D O I
暂无
中图分类号
学科分类号
摘要
The theory of coverings of the two-dimensional torus is a standard part of algebraic topology and has applications in several topics in string theory, for example, in topological strings. This paper initiates applications of this theory to the counting of orbifolds of toric Calabi-Yau singularities, with particular attention to Abelian orbifolds of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathbb{C}^D} $\end{document}. By doing so, the work introduces a novel analytical method for counting Abelian orbifolds, verifying previous algorithm results. One identifies a p-fold cover of the torus \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathbb{T}^{D - 1}} $\end{document} with an Abelian orbifold of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{{{\mathbb{C}^D}}} \left/ {{{\mathbb{Z}_p}}} \right.} $\end{document}, for any dimension D and a prime number p. The counting problem leads to polynomial equations modulo p for a given Abelian subgroup of SD, the group of discrete symmetries of the toric diagram for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathbb{C}^D} $\end{document}. The roots of the polynomial equations correspond to orbifolds of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{{{\mathbb{C}^D}}} \left/ {{{\mathbb{Z}_p}}} \right.} $\end{document}, which are invariant under the corresponding subgroup of SD. In turn, invariance under this subgroup implies a discrete symmetry for the corresponding quiver gauge theory, as is clearly seen by its brane tiling formulation.
引用
收藏
相关论文
共 50 条
  • [1] Calabi-Yau orbifolds and torus coverings
    Hanany, Amihay
    Jejjala, Vishnu
    Ramgoolam, Sanjaye
    Seong, Rak-Kyeong
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (09):
  • [2] Calabi-Yau duals of torus orientifolds
    Schulz, Michael B.
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (05):
  • [3] Calabi-Yau orbifolds over Hitchin bases
    Beck, Florian
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 136 : 14 - 30
  • [4] Motives and Mirror Symmetry for Calabi-Yau Orbifolds
    Kadir, Shabnam
    Yui, Noriko
    MODULAR FORMS AND STRING DUALITY, 2008, 54 : 3 - +
  • [5] Calabi-Yau and fractional Calabi-Yau categories
    Kuznetsov, Alexander
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 753 : 239 - 267
  • [6] New Calabi-Yau orbifolds with mirror Hodge diamonds
    Stapledon, Alan
    ADVANCES IN MATHEMATICS, 2012, 230 (4-6) : 1557 - 1596
  • [7] ON THE REMODELING CONJECTURE FOR TORIC CALABI-YAU 3-ORBIFOLDS
    Fang, Bohan
    Liu, Chiu-Chu Melissa
    Zong, Zhengyu
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 33 (01) : 135 - 222
  • [8] NC Calabi-Yau orbifolds in toric varieties with discrete torsion
    Belhaj, A
    Saidi, EH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (03): : 721 - 747
  • [9] Torus fibrations of Calabi-Yau hypersurfaces in toric varieties
    Zharkov, I
    DUKE MATHEMATICAL JOURNAL, 2000, 101 (02) : 237 - 257
  • [10] Remarks on the collapsing of torus fibered Calabi-Yau manifolds
    Hein, Hans-Joachim
    Tosatti, Valentino
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2015, 47 : 1021 - 1027