Colloidal cholesteric liquid crystal in spherical confinement

被引:0
|
作者
Yunfeng Li
Jeffrey Jun-Yan Suen
Elisabeth Prince
Egor M. Larin
Anna Klinkova
Héloïse Thérien-Aubin
Shoujun Zhu
Bai Yang
Amr S. Helmy
Oleg D. Lavrentovich
Eugenia Kumacheva
机构
[1] University of Toronto,Department of Chemistry
[2] State Key Laboratory of Supramolecular Structure and Materials,The Edward S. Rogers Sr. Department of Electrical and Computer Engineering and the Institute of Optical Sciences
[3] College of Chemistry,Department of Chemical Engineering and Applied Chemistry
[4] Jilin University,undefined
[5] University of Toronto,undefined
[6] Liquid Crystal Institute and Chemical Physics Interdisciplinary Program,undefined
[7] Kent State University,undefined
[8] Institute of Biomaterials & Biomedical Engineering,undefined
[9] University of Toronto,undefined
[10] University of Toronto,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The organization of nanoparticles in constrained geometries is an area of fundamental and practical importance. Spherical confinement of nanocolloids leads to new modes of packing, self-assembly, phase separation and relaxation of colloidal liquids; however, it remains an unexplored area of research for colloidal liquid crystals. Here we report the organization of cholesteric liquid crystal formed by nanorods in spherical droplets. For cholesteric suspensions of cellulose nanocrystals, with progressive confinement, we observe phase separation into a micrometer-size isotropic droplet core and a cholesteric shell formed by concentric nanocrystal layers. Further confinement results in a transition to a bipolar planar cholesteric morphology. The distribution of polymer, metal, carbon or metal oxide nanoparticles in the droplets is governed by the nanoparticle size and yields cholesteric droplets exhibiting fluorescence, plasmonic properties and magnetic actuation. This work advances our understanding of how the interplay of order, confinement and topological defects affects the morphology of soft matter.
引用
收藏
相关论文
共 50 条
  • [41] Planar amplifier for a microlaser on a cholesteric liquid crystal
    Blinova, L. M.
    Cipparrone, G.
    Lazarev, V. V.
    Umanskii, B. A.
    APPLIED PHYSICS LETTERS, 2007, 91 (06)
  • [42] Switching dynamics in cholesteric liquid crystal emulsions
    Fadda, F.
    Gonnella, G.
    Marenduzzo, D.
    Orlandini, E.
    Tiribocchi, A.
    JOURNAL OF CHEMICAL PHYSICS, 2017, 147 (06):
  • [43] Thermal response of cholesteric liquid crystal elastomers
    Nagai, Hama
    Urayama, Kenji
    PHYSICAL REVIEW E, 2015, 92 (02):
  • [44] Infrared shutter using cholesteric liquid crystal
    Choi, Gyu Jin
    Jung, Hye Min
    Lee, Seung Hee
    Gwag, Jin Seog
    APPLIED OPTICS, 2016, 55 (16) : 4436 - 4440
  • [45] VCSELs with nematic and cholesteric liquid crystal overlays
    Panajotov, K.
    Dems, M.
    Belmonte, C.
    Thienpont, H.
    Xie, Y.
    Beeckman, J.
    Neyts, K.
    VERTICAL-CAVITY SURFACE-EMITTING LASERS XVII, 2013, 8639
  • [46] Thermomechanically driven spirals in a cholesteric liquid crystal
    Oswald, Patrick
    Dequidt, Alain
    PHYSICAL REVIEW E, 2008, 77 (05):
  • [47] Mechanogeometry of nanowrinkling in cholesteric liquid crystal surfaces
    Wang, Ziheng
    Servio, Phillip
    Rey, Alejandro D.
    PHYSICAL REVIEW E, 2020, 101 (06)
  • [48] Anchoring of a cholesteric liquid crystal at the free surface
    Meister, R
    Dumoulin, H
    Halle, MA
    Pieranski, P
    JOURNAL DE PHYSIQUE II, 1996, 6 (06): : 827 - 844
  • [49] NEW TYPE OF CHOLESTERIC LIQUID-CRYSTAL
    PLEINER, H
    BRAND, HR
    PHYSICAL REVIEW LETTERS, 1985, 54 (16) : 1817 - 1819
  • [50] Cholesteric liquid crystal devices with nanoparticle aggregation
    Jeng, Shie-Chang
    Hwang, Shug-June
    Hung, Yu-Hsiang
    Chen, Sheng-Chieh
    OPTICS EXPRESS, 2010, 18 (21): : 22572 - 22577