Colloidal cholesteric liquid crystal in spherical confinement

被引:0
|
作者
Yunfeng Li
Jeffrey Jun-Yan Suen
Elisabeth Prince
Egor M. Larin
Anna Klinkova
Héloïse Thérien-Aubin
Shoujun Zhu
Bai Yang
Amr S. Helmy
Oleg D. Lavrentovich
Eugenia Kumacheva
机构
[1] University of Toronto,Department of Chemistry
[2] State Key Laboratory of Supramolecular Structure and Materials,The Edward S. Rogers Sr. Department of Electrical and Computer Engineering and the Institute of Optical Sciences
[3] College of Chemistry,Department of Chemical Engineering and Applied Chemistry
[4] Jilin University,undefined
[5] University of Toronto,undefined
[6] Liquid Crystal Institute and Chemical Physics Interdisciplinary Program,undefined
[7] Kent State University,undefined
[8] Institute of Biomaterials & Biomedical Engineering,undefined
[9] University of Toronto,undefined
[10] University of Toronto,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The organization of nanoparticles in constrained geometries is an area of fundamental and practical importance. Spherical confinement of nanocolloids leads to new modes of packing, self-assembly, phase separation and relaxation of colloidal liquids; however, it remains an unexplored area of research for colloidal liquid crystals. Here we report the organization of cholesteric liquid crystal formed by nanorods in spherical droplets. For cholesteric suspensions of cellulose nanocrystals, with progressive confinement, we observe phase separation into a micrometer-size isotropic droplet core and a cholesteric shell formed by concentric nanocrystal layers. Further confinement results in a transition to a bipolar planar cholesteric morphology. The distribution of polymer, metal, carbon or metal oxide nanoparticles in the droplets is governed by the nanoparticle size and yields cholesteric droplets exhibiting fluorescence, plasmonic properties and magnetic actuation. This work advances our understanding of how the interplay of order, confinement and topological defects affects the morphology of soft matter.
引用
收藏
相关论文
共 50 条
  • [21] Cholesteric liquid crystal holographic laser
    Wardosanidze, Zurab V.
    Chanishvili, Andro
    Petriashvili, Gia
    Chilaya, Guram
    OPTICS LETTERS, 2014, 39 (04) : 1008 - 1010
  • [22] Cholesteric liquid crystal smart reflectors
    Meyer, RB
    Lonberg, F
    Chang, CC
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS SCIENCE AND TECHNOLOGY SECTION A-MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1996, 288 : 47 - 61
  • [23] Transition radiation in cholesteric liquid crystal
    Velazquez, Carlos A.
    Reyes, J. Adrian
    Vazquez, Gerardo J.
    LIQUID CRYSTALS, 2017, 44 (07) : 1104 - 1115
  • [24] Exotic crystal superstructures of colloidal crystals in confinement
    Fontecha, Ana Barreira
    Schoepe, Hans Joachim
    PHYSICAL REVIEW E, 2008, 77 (06):
  • [25] Liquid crystal phase shifter for THz radiation with cholesteric liquid crystal
    Chodorow, U.
    Parka, J.
    Strzezysz, O.
    Mazur, R.
    Morawiak, P.
    Palka, N.
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2017, 657 (01) : 51 - 55
  • [26] Defects Around a Spherical Particle in Cholesteric Liquid Crystals
    Tong, Yu
    Wang, Yiwei
    Zhang, Pingwen
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2017, 10 (02) : 205 - 221
  • [27] Exploring the interplay of liquid crystal orientation and spherical elastic shell deformation in spatial confinement
    Liu, You-Lu
    Zhu, You-Liang
    Li, Yan-Chun
    Lu, Zhong-Yuan
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (07) : 6180 - 6188
  • [28] Spherical particle immersed in a nematic liquid crystal: Effects of confinement on the director field configurations
    Grollau, S
    Abbott, NL
    de Pablo, JJ
    PHYSICAL REVIEW E, 2003, 67 (01):
  • [29] Colloidal crystal ordering in a liquid crystal
    Blanc, Christophe
    SCIENCE, 2016, 352 (6281) : 40 - 41
  • [30] Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector
    Zhou, Y
    Huang, Y
    Wu, ST
    OPTICS EXPRESS, 2006, 14 (09) : 3906 - 3916