Long-time behavior of a semilinear wave equation with memory

被引:0
|
作者
Baowei Feng
Maurício L Pelicer
Doherty Andrade
机构
[1] Southwestern University of Finance and Economics,College of Economic Mathematics
[2] State University of Maringá,Department of Sciences, Regional Campus of Goioerê
[3] State University of Maringá,Department of Mathematics
来源
关键词
wave equation; global attractor; memory; viscoelasticity; 35L71; 35B41; 74D99;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the long-time dynamics of the semilinear viscoelastic equation utt−Δutt−Δu+∫0∞μ(s)Δu(t−s)ds+f(u)=h,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{tt} - \Delta u_{tt} - \Delta u + \int_{0}^{\infty} \mu(s) \Delta u(t-s) \,ds + f(u) = h , $$\end{document} defined in a bounded domain of R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{3}$\end{document} with Dirichlet boundary condition. The functions f=f(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f=f(u)$\end{document} and h=h(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$h=h(x)$\end{document} represent forcing terms and the kernel function μ≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu\ge0$\end{document} is assumed to decay exponentially. Then, by exploring only the dissipation given by the memory term, we establish the existence of a global attractor to the corresponding dynamical system.
引用
收藏
相关论文
共 50 条
  • [31] Optimal Regularity and Long-Time Behavior of Solutions for the Westervelt Equation
    Stefan Meyer
    Mathias Wilke
    Applied Mathematics & Optimization, 2011, 64 : 257 - 271
  • [32] Long-Time Asymptotic Behavior for the Discrete Defocusing mKdV Equation
    Meisen Chen
    Engui Fan
    Journal of Nonlinear Science, 2020, 30 : 953 - 990
  • [33] Optimal Regularity and Long-Time Behavior of Solutions for the Westervelt Equation
    Meyer, Stefan
    Wilke, Mathias
    APPLIED MATHEMATICS AND OPTIMIZATION, 2011, 64 (02): : 257 - 271
  • [34] LONG-TIME BEHAVIOR OF SOLUTIONS OF A BBM EQUATION WITH GENERALIZED DAMPING
    Chehab, Jean-Paul
    Garnier, Pierre
    Mammeri, Youcef
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (07): : 1897 - 1915
  • [35] Long-time behavior of solutions of some doubly nonlinear equation
    Novruzov, Emil
    APPLICABLE ANALYSIS, 2007, 86 (10) : 1265 - 1281
  • [36] LONG-TIME BEHAVIOR FOR A PLATE EQUATION WITH NONLOCAL WEAK DAMPING
    Jorge Silva, M. A.
    Narciso, V.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2014, 27 (9-10) : 931 - 948
  • [37] LONG-TIME BEHAVIOR OF THE STOCHASTIC NAVIER-STOKES EQUATION
    SCHMALFUSS, B
    MATHEMATISCHE NACHRICHTEN, 1991, 152 : 7 - 20
  • [38] LONG-TIME BEHAVIOR OF SOLUTIONS TO A NONLOCAL QUASILINEAR PARABOLIC EQUATION
    Le Thi Thuy
    Le Tran Tinh
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 34 (04): : 1365 - 1388
  • [39] LONG-TIME BEHAVIOR FOR THE EQUATION OF FINITE-DEPTH FLUIDS
    GUO, BL
    TAN, SB
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 163 (01) : 1 - 15
  • [40] LONG-TIME BEHAVIOR OF THE NONLINEAR SCHRODINGER-LANGEVIN EQUATION
    Chern, I-Liang
    Li, Hai-Liang
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2013, 8 (04): : 505 - 544