Long-time behavior of a semilinear wave equation with memory

被引:0
|
作者
Baowei Feng
Maurício L Pelicer
Doherty Andrade
机构
[1] Southwestern University of Finance and Economics,College of Economic Mathematics
[2] State University of Maringá,Department of Sciences, Regional Campus of Goioerê
[3] State University of Maringá,Department of Mathematics
来源
关键词
wave equation; global attractor; memory; viscoelasticity; 35L71; 35B41; 74D99;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the long-time dynamics of the semilinear viscoelastic equation utt−Δutt−Δu+∫0∞μ(s)Δu(t−s)ds+f(u)=h,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{tt} - \Delta u_{tt} - \Delta u + \int_{0}^{\infty} \mu(s) \Delta u(t-s) \,ds + f(u) = h , $$\end{document} defined in a bounded domain of R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{3}$\end{document} with Dirichlet boundary condition. The functions f=f(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f=f(u)$\end{document} and h=h(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$h=h(x)$\end{document} represent forcing terms and the kernel function μ≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu\ge0$\end{document} is assumed to decay exponentially. Then, by exploring only the dissipation given by the memory term, we establish the existence of a global attractor to the corresponding dynamical system.
引用
收藏
相关论文
共 50 条
  • [21] LONG-TIME NUMERICAL-SOLUTION OF A PARABOLIC EQUATION WITH MEMORY
    THOMEE, V
    WAHLBIN, LB
    MATHEMATICS OF COMPUTATION, 1994, 62 (206) : 477 - 496
  • [22] Long-time dynamics of an extensible plate equation with thermal memory
    Aguiar Barbosa, Alisson Rafael
    Ma, To Fu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 416 (01) : 143 - 165
  • [23] On long-time behavior of Moore-Gibson-Thompson equation with localized and degenerate memory effect
    Zhang, Hui
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (02):
  • [24] On long-time behavior of Moore-Gibson-Thompson equation with localized and degenerate memory effect
    Hui Zhang
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [25] LONG-TIME BEHAVIOR FOR SEMILINEAR DEGENERATE PARABOLIC EQUATIONS ON R-N
    Cung The Anh
    Le Thi Thuy
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 28 (04): : 751 - 766
  • [26] Long-time behavior of a quasilinear viscoelastic equation with past history
    Araujo, Rawlilson de Oliveira
    Ma, To Fu
    Qin, Yuming
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (10) : 4066 - 4087
  • [27] Long-time asymptotic behavior for the complex short pulse equation
    Xu, Jian
    Fan, Engui
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (11) : 10322 - 10349
  • [28] On the long-time behavior of the quantum Fokker-Planck equation
    Sparber, C
    Carrillo, JA
    Dolbeault, J
    Markowich, PA
    MONATSHEFTE FUR MATHEMATIK, 2004, 141 (03): : 237 - 257
  • [29] On the Long-Time Behavior of the Quantum Fokker-Planck Equation
    C. Sparber
    J. A. Carrillo
    J. Dolbeault
    P. A. Markowich
    Monatshefte für Mathematik, 2004, 141 : 237 - 257
  • [30] Long-Time Asymptotic Behavior for the Discrete Defocusing mKdV Equation
    Chen, Meisen
    Fan, Engui
    JOURNAL OF NONLINEAR SCIENCE, 2020, 30 (03) : 953 - 990