Long-time behavior of a semilinear wave equation with memory

被引:0
|
作者
Baowei Feng
Maurício L Pelicer
Doherty Andrade
机构
[1] Southwestern University of Finance and Economics,College of Economic Mathematics
[2] State University of Maringá,Department of Sciences, Regional Campus of Goioerê
[3] State University of Maringá,Department of Mathematics
来源
关键词
wave equation; global attractor; memory; viscoelasticity; 35L71; 35B41; 74D99;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the long-time dynamics of the semilinear viscoelastic equation utt−Δutt−Δu+∫0∞μ(s)Δu(t−s)ds+f(u)=h,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{tt} - \Delta u_{tt} - \Delta u + \int_{0}^{\infty} \mu(s) \Delta u(t-s) \,ds + f(u) = h , $$\end{document} defined in a bounded domain of R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{3}$\end{document} with Dirichlet boundary condition. The functions f=f(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f=f(u)$\end{document} and h=h(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$h=h(x)$\end{document} represent forcing terms and the kernel function μ≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu\ge0$\end{document} is assumed to decay exponentially. Then, by exploring only the dissipation given by the memory term, we establish the existence of a global attractor to the corresponding dynamical system.
引用
收藏
相关论文
共 50 条