Acyclic Edge Coloring of 1-planar Graphs without 4-cycles

被引:0
|
作者
Wei-fan Wang
Yi-qiao Wang
Wan-shun Yang
机构
[1] Zhejiang Normal University,Department of Mathematics
[2] Beijing University of Chinese Medicine,School of Management
[3] Weifang University,School of Mathematics and Information Science
关键词
1-planar graph; acyclic edge coloring; acyclic chromatic index; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
An acyclic edge coloring of a graph G is a proper edge coloring such that there are no bichromatic cycles in G. The acyclic chromatic index Xα′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{X}_{\alpha}^{\prime}(G)$$\end{document} of G is the smallest k such that G has an acyclic edge coloring using k colors. It was conjectured that every simple graph G with maximum degree Δ has Xα′(G)≤Δ+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{X}_{\alpha}^{\prime}(G)\le\Delta+2$$\end{document}. A 1-planar graph is a graph that can be drawn in the plane so that each edge is crossed by at most one other edge. In this paper, we show that every 1-planar graph G without 4-cycles has Xα′(G)≤Δ+22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{X}_{\alpha}^{\prime}(G)\le\Delta+22$$\end{document}.
引用
收藏
页码:35 / 44
页数:9
相关论文
共 50 条
  • [21] 1-planar Graphs without 4-cycles or 5-cycles are 5-colorable
    Li-li SONG
    Lei SUN
    ActaMathematicaeApplicataeSinica, 2022, 38 (01) : 169 - 177
  • [22] Acyclic 4-Choosability of Planar Graphs Without 4-Cycles
    Sun, Yingcai
    Chen, Min
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2020, 70 (01) : 161 - 178
  • [23] 1-planar Graphs without 4-cycles or 5-cycles are 5-colorable
    Li-li Song
    Lei Sun
    Acta Mathematicae Applicatae Sinica, English Series, 2022, 38 : 169 - 177
  • [24] 1-planar Graphs without 4-cycles or 5-cycles are 5-colorable
    Song, Li-li
    Sun, Lei
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2022, 38 (01): : 169 - 177
  • [25] Acyclic 4-Choosability of Planar Graphs Without 4-Cycles
    Yingcai Sun
    Min Chen
    Czechoslovak Mathematical Journal, 2020, 70 : 161 - 178
  • [26] Acyclic edge coloring of planar graphs without cycles of specific lengths
    Gao Y.
    Yu D.
    Journal of Applied Mathematics and Computing, 2011, 37 (1-2) : 533 - 540
  • [27] Acyclic edge coloring of planar graphs without 5-cycles
    Shu, Qiaojun
    Wang, Weifan
    Wang, Yiqiao
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) : 1211 - 1223
  • [28] Edge coloring of 1-planar graphs without intersecting triangles and chordal 5-cycles
    Jin, Jing
    Xu, Baogang
    ARS COMBINATORIA, 2017, 135 : 71 - 81
  • [29] Acyclic 5-choosability of planar graphs without 4-cycles
    Chen, Min
    Wang, Weifan
    DISCRETE MATHEMATICS, 2008, 308 (24) : 6216 - 6225
  • [30] A note on the total coloring of planar graphs without adjacent 4-cycles
    Wang, Hui-Juan
    Wu, Jian-Liang
    DISCRETE MATHEMATICS, 2012, 312 (11) : 1923 - 1926