Acyclic Edge Coloring of 1-planar Graphs without 4-cycles

被引:0
|
作者
Wei-fan Wang
Yi-qiao Wang
Wan-shun Yang
机构
[1] Zhejiang Normal University,Department of Mathematics
[2] Beijing University of Chinese Medicine,School of Management
[3] Weifang University,School of Mathematics and Information Science
关键词
1-planar graph; acyclic edge coloring; acyclic chromatic index; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
An acyclic edge coloring of a graph G is a proper edge coloring such that there are no bichromatic cycles in G. The acyclic chromatic index Xα′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{X}_{\alpha}^{\prime}(G)$$\end{document} of G is the smallest k such that G has an acyclic edge coloring using k colors. It was conjectured that every simple graph G with maximum degree Δ has Xα′(G)≤Δ+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{X}_{\alpha}^{\prime}(G)\le\Delta+2$$\end{document}. A 1-planar graph is a graph that can be drawn in the plane so that each edge is crossed by at most one other edge. In this paper, we show that every 1-planar graph G without 4-cycles has Xα′(G)≤Δ+22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{X}_{\alpha}^{\prime}(G)\le\Delta+22$$\end{document}.
引用
收藏
页码:35 / 44
页数:9
相关论文
共 50 条
  • [1] Acyclic Edge Coloring of 1-planar Graphs without 4-cycles
    Wei-fan WANG
    Yi-qiao WANG
    Wan-shun YANG
    ActaMathematicaeApplicataeSinica, 2024, 40 (01) : 35 - 44
  • [2] Acyclic Edge Coloring of 1-planar Graphs without 4-cycles
    Wang, Wei-fan
    Wang, Yi-qiao
    Yang, Wan-shun
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2024, 40 (01): : 35 - 44
  • [3] Acyclic edge coloring of planar graphs without 4-cycles
    Wang, Weifan
    Shu, Qiaojun
    Wang, Yiqiao
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 25 (04) : 562 - 586
  • [4] Acyclic edge coloring of planar graphs without 4-cycles
    Weifan Wang
    Qiaojun Shu
    Yiqiao Wang
    Journal of Combinatorial Optimization, 2013, 25 : 562 - 586
  • [5] Edge DP-coloring of planar graphs without 4-cycles and specific cycles
    Jumnongnit, Patcharapan
    Nakprasit, Kittikorn
    Ruksasakchai, Watcharintorn
    Sittitrai, Pongpat
    DISCRETE MATHEMATICS, 2025, 348 (04)
  • [6] Equitable Δ-Coloring of Planar Graphs without 4-cycles
    Tan, Xiang
    OPERATIONS RESEARCH AND ITS APPLICATIONS, 2010, 12 : 400 - 405
  • [7] Linear Coloring of Planar Graphs Without 4-Cycles
    Wang, Weifan
    Wang, Yiqiao
    GRAPHS AND COMBINATORICS, 2013, 29 (04) : 1113 - 1124
  • [8] Adjacent Vertex Distinguishing Edge Coloring of Planar Graphs Without 4-Cycles
    Danjun Huang
    Xiaoxiu Zhang
    Weifan Wang
    Ping Wang
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 3159 - 3181
  • [9] Linear Coloring of Planar Graphs Without 4-Cycles
    Weifan Wang
    Yiqiao Wang
    Graphs and Combinatorics, 2013, 29 : 1113 - 1124
  • [10] Adjacent Vertex Distinguishing Edge Coloring of Planar Graphs Without 4-Cycles
    Huang, Danjun
    Zhang, Xiaoxiu
    Wang, Weifan
    Wang, Ping
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (04) : 3159 - 3181