Global Boundedness of Solutions to a Quasilinear Chemotaxis System with Nonlocal Nonlinear Reaction

被引:0
|
作者
Xueyan Tao
Zhong Bo Fang
机构
[1] Ocean University of China,School of Mathematical Sciences
来源
关键词
Chemotaxis; Nonlocal reaction; Global existence; Boundedness; 92C17; 35K59; 35K20;
D O I
暂无
中图分类号
学科分类号
摘要
This work studies a class of chemotaxis systems generalizing the prototype ut=d∇·((1+u)m-1∇u)-χ∇·(u(1+u)σ-2∇v)+μuα(1-∫Ωuβ),0=Δv-v+u,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} u_t= d\nabla \cdot ( (1+u)^{m-1}\nabla u) - \chi \nabla \cdot (u(1+u)^{\sigma -2} \nabla v) +\mu u^{\alpha }\Big (\displaystyle 1-\int _{\Omega }u^{\beta }\Big ),\\ 0= \Delta v-v+ u, \end{array}\right. } \end{aligned}$$\end{document}with nonnegative initial data under zero-flux boundary conditions in a smooth bounded domain Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb {R}}^N$$\end{document}(N≥1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(N\ge 1)$$\end{document}, where d, m, χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}, μ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu >0$$\end{document}, σ≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma \ge 1$$\end{document}, and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, β>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta >1$$\end{document}. In this paper, it is rigorously proved that a global classical solution exists under the condition σ+N2(σ-m)-β<α<m+2Nβ.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \displaystyle \sigma +\frac{N}{2}(\sigma -m)-\beta< \alpha <m+\frac{2}{N} \beta . \end{aligned}$$\end{document}Moreover, the borderline case that α=σ+N2(σ-m)-β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =\displaystyle \sigma +\frac{N}{2}(\sigma -m)-\beta $$\end{document} is also taken into account and it is shown that a global classical solution exists when μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} is suitably large.
引用
收藏
相关论文
共 50 条