Global Boundedness of Solutions to a Quasilinear Chemotaxis System with Nonlocal Nonlinear Reaction

被引:0
|
作者
Xueyan Tao
Zhong Bo Fang
机构
[1] Ocean University of China,School of Mathematical Sciences
来源
关键词
Chemotaxis; Nonlocal reaction; Global existence; Boundedness; 92C17; 35K59; 35K20;
D O I
暂无
中图分类号
学科分类号
摘要
This work studies a class of chemotaxis systems generalizing the prototype ut=d∇·((1+u)m-1∇u)-χ∇·(u(1+u)σ-2∇v)+μuα(1-∫Ωuβ),0=Δv-v+u,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} u_t= d\nabla \cdot ( (1+u)^{m-1}\nabla u) - \chi \nabla \cdot (u(1+u)^{\sigma -2} \nabla v) +\mu u^{\alpha }\Big (\displaystyle 1-\int _{\Omega }u^{\beta }\Big ),\\ 0= \Delta v-v+ u, \end{array}\right. } \end{aligned}$$\end{document}with nonnegative initial data under zero-flux boundary conditions in a smooth bounded domain Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb {R}}^N$$\end{document}(N≥1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(N\ge 1)$$\end{document}, where d, m, χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}, μ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu >0$$\end{document}, σ≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma \ge 1$$\end{document}, and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, β>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta >1$$\end{document}. In this paper, it is rigorously proved that a global classical solution exists under the condition σ+N2(σ-m)-β<α<m+2Nβ.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \displaystyle \sigma +\frac{N}{2}(\sigma -m)-\beta< \alpha <m+\frac{2}{N} \beta . \end{aligned}$$\end{document}Moreover, the borderline case that α=σ+N2(σ-m)-β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =\displaystyle \sigma +\frac{N}{2}(\sigma -m)-\beta $$\end{document} is also taken into account and it is shown that a global classical solution exists when μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} is suitably large.
引用
收藏
相关论文
共 50 条
  • [21] Global boundedness of solutions to a two-species chemotaxis system
    Qingshan Zhang
    Yuxiang Li
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 83 - 93
  • [22] Boundedness of solutions in a chemotaxis system with nonlinear sensitivity and logistic source
    Zheng, Pan
    Mu, Chunlai
    Hu, Xuegang
    Tian, Ya
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 424 (01) : 509 - 522
  • [23] BOUNDEDNESS IN A CHEMOTAXIS MODEL WITH NONLOCAL EFFECT AND NONLINEAR PRODUCTION
    Du, Wenping
    Liu, Suying
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025, 30 (05): : 1658 - 1668
  • [24] Global boundedness of solutions to a two-species chemotaxis system
    Zhang, Qingshan
    Li, Yuxiang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (01): : 83 - 93
  • [25] Uniform Boundedness and Global Existence of Solutions to a Quasilinear Diffusion Equation with Nonlocal Fisher-KPP Type Reaction Term
    Tao, Xueyan
    Fang, Zhong Bo
    TAIWANESE JOURNAL OF MATHEMATICS, 2021, 25 (01): : 89 - 105
  • [26] Boundedness of solutions to a chemotaxis–haptotaxis model with nonlocal terms
    Guoqiang Ren
    Nonlinear Differential Equations and Applications NoDEA, 2024, 31
  • [27] Global boundedness and asymptotic behavior in an attraction–repulsion chemotaxis system with nonlocal terms
    Guoqiang Ren
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [28] \Global existence and blow up of solutions of quasilinear chemotaxis system
    Bhuvaneswari, Venkatasubramaniam
    Shangerganesh, Lingeshwaran
    Balachandran, Krishnan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (17) : 3738 - 3746
  • [29] Boundedness in a quasilinear attraction-repulsion chemotaxis system with nonlinear sensitivity and logistic source
    Yan, Lijun
    Yang, Zuodong
    BOUNDARY VALUE PROBLEMS, 2019, 2019 (1)
  • [30] Boundedness in a quasilinear chemotaxis–haptotaxis system with logistic source
    Ji Liu
    Jiashan Zheng
    Yifu Wang
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67