Halfspace type theorems for self-shrinkers in arbitrary codimension

被引:0
|
作者
Hieu T. Doan
Duyen T. M. Nguyen
机构
[1] Hue University,Department of Mathematics, College of Education
来源
Collectanea Mathematica | 2024年 / 75卷
关键词
Halfspace type theorem; Divergence type theorem; Self-shrinkers; Primary 53C21; Secondary 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we generalize some halfspace type theorems for self-shrinkers of codimension 1 to the case of arbitrary codimension.
引用
收藏
页码:425 / 435
页数:10
相关论文
共 50 条
  • [21] SELF-SHRINKERS WITH A ROTATIONAL SYMMETRY
    Kleene, Stephen
    Moller, Niels Martin
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (08) : 3943 - 3963
  • [22] Entropy bounds, compactness and finiteness theorems for embedded self-shrinkers with rotational symmetry
    Ma, John Man Shun
    Muhammad, Ali
    Moller, Niels Martin
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (793): : 239 - 259
  • [23] Vanishing theorems, higher order mean curvatures and index estimates for self-shrinkers
    Bessa, Gregorio Pacelli
    Pessoa, Leandro F.
    Rigoli, Marco
    ISRAEL JOURNAL OF MATHEMATICS, 2018, 226 (02) : 703 - 736
  • [24] Gap theorems for complete self-shrinkers of r-mean curvature flows ☆
    Alencar, Hilario
    Bessa, G. Pacelli
    Neto, Gregorio Silva
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 289 (01)
  • [25] Vanishing theorems, higher order mean curvatures and index estimates for self-shrinkers
    Gregório Pacelli Bessa
    Leandro F. Pessoa
    Marco Rigoli
    Israel Journal of Mathematics, 2018, 226 : 703 - 736
  • [26] THE SECOND GAP ON COMPLETE SELF-SHRINKERS
    Cheng, Qing-Ming
    Wei, Guoxin
    Yano, Wataru
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (01) : 339 - 348
  • [27] A Survey of Closed Self-Shrinkers with Symmetry
    Gregory Drugan
    Hojoo Lee
    Xuan Hien Nguyen
    Results in Mathematics, 2018, 73
  • [28] On the Rigidity of Mean Convex Self-Shrinkers
    Guang, Qiang
    Zhu, Jonathan J.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (20) : 6406 - 6425
  • [29] A note on the characterization of spheres as self-shrinkers
    Costa-Filho, Wagner O.
    ARCHIV DER MATHEMATIK, 2020, 115 (06) : 737 - 739
  • [30] Entropy Bounds for Self-Shrinkers with Symmetries
    John Man Shun Ma
    Ali Muhammad
    The Journal of Geometric Analysis, 2024, 34