A note on the characterization of spheres as self-shrinkers

被引:0
|
作者
Costa-Filho, Wagner O. [1 ]
机构
[1] Univ Fed Alagoas, Campus Arapiraca, Arapiraca, AL 57309 USA
关键词
Self-shrinkers; Immersed submanifolds; Minkowski formula;
D O I
10.1007/s00013-020-01522-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize spheres as the unique complete properly immersed self-shrinkers in arbitrary codimension satisfying a geometric inequality.
引用
收藏
页码:737 / 739
页数:3
相关论文
共 50 条
  • [1] A note on the characterization of spheres as self-shrinkers
    Wagner O. Costa-Filho
    Archiv der Mathematik, 2020, 115 : 737 - 739
  • [2] A note on rigidity of spacelike self-shrinkers
    Luo, Yong
    Qiu, Hongbing
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2020, 31 (05)
  • [3] IMMERSED SELF-SHRINKERS
    Drugan, Gregory
    Kleene, Stephen J.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (10) : 7213 - 7250
  • [4] Self-shrinkers with bounded |HA|
    Li, Haozhao
    Wang, Zhen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 512 (01)
  • [6] Smooth compactness of self-shrinkers
    Colding, Tobias H.
    Minicozzi, William P., II
    COMMENTARII MATHEMATICI HELVETICI, 2012, 87 (02) : 463 - 475
  • [7] THE RIGIDITY THEOREMS OF SELF-SHRINKERS
    Ding, Qi
    Xin, Y. L.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (10) : 5067 - 5085
  • [8] A GAP THEOREM OF SELF-SHRINKERS
    Cheng, Qing-Ming
    Wei, Guoxin
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (07) : 4895 - 4915
  • [9] SELF-SHRINKERS WITH A ROTATIONAL SYMMETRY
    Kleene, Stephen
    Moller, Niels Martin
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (08) : 3943 - 3963
  • [10] THE SECOND GAP ON COMPLETE SELF-SHRINKERS
    Cheng, Qing-Ming
    Wei, Guoxin
    Yano, Wataru
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (01) : 339 - 348