A note on the characterization of spheres as self-shrinkers

被引:0
|
作者
Costa-Filho, Wagner O. [1 ]
机构
[1] Univ Fed Alagoas, Campus Arapiraca, Arapiraca, AL 57309 USA
关键词
Self-shrinkers; Immersed submanifolds; Minkowski formula;
D O I
10.1007/s00013-020-01522-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize spheres as the unique complete properly immersed self-shrinkers in arbitrary codimension satisfying a geometric inequality.
引用
收藏
页码:737 / 739
页数:3
相关论文
共 50 条
  • [11] A Survey of Closed Self-Shrinkers with Symmetry
    Gregory Drugan
    Hojoo Lee
    Xuan Hien Nguyen
    Results in Mathematics, 2018, 73
  • [12] On the Rigidity of Mean Convex Self-Shrinkers
    Guang, Qiang
    Zhu, Jonathan J.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (20) : 6406 - 6425
  • [13] Entropy Bounds for Self-Shrinkers with Symmetries
    John Man Shun Ma
    Ali Muhammad
    The Journal of Geometric Analysis, 2024, 34
  • [14] The rigidity theorems for Lagrangian self-shrinkers
    Ding, Qi
    Xin, Yuanlong
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 692 : 109 - 123
  • [15] Halfspace type theorems for self-shrinkers
    Cavalcante, Marcos P.
    Espinar, Jose M.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2016, 48 : 242 - 250
  • [16] Entropy Bounds for Self-Shrinkers with Symmetries
    Ma, John Man Shun
    Muhammad, Ali
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (02)
  • [17] ESTIMATES FOR EIGENVALUES OF £ OPERATOR ON SELF-SHRINKERS
    Cheng, Qing-Ming
    Peng, Yejuan
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2013, 15 (06)
  • [18] An unknottedness result for noncompact self-shrinkers
    Mramor, Alexander
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (810): : 189 - 215
  • [19] SELF-SHRINKERS OF THE MEAN CURVATURE FLOW
    Cheng, Qing-Ming
    Peng, Yejuan
    DIFFERENTIAL GEOMETRY OF SUBMANIFOLDS AND ITS RELATED TOPICS, 2014, : 147 - 163
  • [20] Rotational Self-Shrinkers in Euclidean Spaces
    Arslan, Kadri
    Aydin, Yilmaz
    Sokur, Betuel Bulca
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2024, 17 (01): : 34 - 43