Complementarity properties of the Lyapunov transformation over symmetric cones

被引:0
|
作者
Yuan Min Li
Xing Tao Wang
De Yun Wei
机构
[1] Harbin Institute of Technology,Department of Mathematics
[2] Harbin Institute of Technology,National Key Laboratory of Tunable Laser Technology
关键词
Euclidean Jordan algebra; Lyapunov transformation; symmetric cone; complementarity problem; 17C65; 65K10; 17C90;
D O I
暂无
中图分类号
学科分类号
摘要
The well-known Lyapunov’s theorem in matrix theory/continuous dynamical systems asserts that a square matrix A is positive stable if and only if there exists a positive definite matrix X such that AX+XA* is positive definite. In this paper, we extend this theorem to the setting of any Euclidean Jordan algebra V. Given any element a ∈ V, we consider the corresponding Lyapunov transformation La and show that the P and S-properties are both equivalent to a being positive. Then we characterize the R0-property for La and show that La has the R0-property if and only if a is invertible. Finally, we provide La with some characterizations of the E0-property and the nondegeneracy property.
引用
收藏
页码:1431 / 1442
页数:11
相关论文
共 50 条
  • [41] A New Infeasible Mehrotra-Type Predictor-Corrector Algorithm for Nonlinear Complementarity Problems Over Symmetric Cones
    Zhao, Huali
    Liu, Hongwei
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 176 (02) : 410 - 427
  • [42] A Class of Polynomial Interior Point Algorithms for the Cartesian P-Matrix Linear Complementarity Problem over Symmetric Cones
    Wang, G. Q.
    Bai, Y. Q.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 152 (03) : 739 - 772
  • [43] Infeasible path-following interior point algorithm for Cartesian P*() nonlinear complementarity problems over symmetric cones
    Zhao, Huali
    Liu, Hongwei
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (05) : 845 - 869
  • [44] Kernel-Based Interior-Point Methods for Cartesian P*(κ)-Linear Complementarity Problems over Symmetric Cones
    Lesaja, G.
    CROATIAN OPERATIONAL RESEARCH REVIEW (CRORR), VOL 2, 2011, 2 : 23 - 32
  • [45] Non-facial exposedness of copositive cones over symmetric cones
    Nishijima, Mitsuhiro
    Lourenco, Bruno F.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 545 (02)
  • [46] STEIN LINEAR PROGRAMS OVER SYMMETRIC CONES
    Jeyaraman, I.
    Sivakumar, K. C.
    Vetrivel, V.
    INTERNATIONAL GAME THEORY REVIEW, 2013, 15 (04)
  • [47] A NOTE ON NORMALITY OF CONES OVER SYMMETRIC VARIETIES
    Chirivi, Rocco
    Maffei, Andrea
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (03) : 1179 - 1187
  • [48] Embedding cones over trees into their symmetric products
    Corona-Vazquez, F.
    Quinones-Estrella, R. A.
    Villanueva, H.
    TOPOLOGY AND ITS APPLICATIONS, 2017, 231 : 77 - 91
  • [49] Siegel domains over Finsler symmetric cones
    Chu, Cho-Ho
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2021, 778 : 145 - 169
  • [50] Construction of proximal distances over symmetric cones
    Lopez, Julio
    Papa Quiroz, Erik Alex
    OPTIMIZATION, 2017, 66 (08) : 1301 - 1321