Complementarity properties of the Lyapunov transformation over symmetric cones

被引:0
|
作者
Yuan Min Li
Xing Tao Wang
De Yun Wei
机构
[1] Harbin Institute of Technology,Department of Mathematics
[2] Harbin Institute of Technology,National Key Laboratory of Tunable Laser Technology
关键词
Euclidean Jordan algebra; Lyapunov transformation; symmetric cone; complementarity problem; 17C65; 65K10; 17C90;
D O I
暂无
中图分类号
学科分类号
摘要
The well-known Lyapunov’s theorem in matrix theory/continuous dynamical systems asserts that a square matrix A is positive stable if and only if there exists a positive definite matrix X such that AX+XA* is positive definite. In this paper, we extend this theorem to the setting of any Euclidean Jordan algebra V. Given any element a ∈ V, we consider the corresponding Lyapunov transformation La and show that the P and S-properties are both equivalent to a being positive. Then we characterize the R0-property for La and show that La has the R0-property if and only if a is invertible. Finally, we provide La with some characterizations of the E0-property and the nondegeneracy property.
引用
收藏
页码:1431 / 1442
页数:11
相关论文
共 50 条
  • [11] An application of H differentiability to generalized complementarity problems over symmetric cones
    Tang, Jia
    Ma, Changfeng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 63 (01) : 14 - 24
  • [12] An inexact smoothing method for the monotone complementarity problem over symmetric cones
    Zhang, Jian
    Zhang, Kecun
    OPTIMIZATION METHODS & SOFTWARE, 2012, 27 (03): : 445 - 459
  • [13] Penalized complementarity functions on symmetric cones
    Sangho Kum
    Yongdo Lim
    Journal of Global Optimization, 2010, 46 : 475 - 485
  • [14] Penalized complementarity functions on symmetric cones
    Kum, Sangho
    Lim, Yongdo
    JOURNAL OF GLOBAL OPTIMIZATION, 2010, 46 (03) : 475 - 485
  • [15] On the P*(κ) horizontal linear complementarity problems over Cartesian product of symmetric cones
    Asadi, S.
    Mansouri, H.
    Darvay, Zs.
    Zangiabadi, M.
    OPTIMIZATION METHODS & SOFTWARE, 2016, 31 (02): : 233 - 257
  • [16] An Infeasible Interior Point Method for Linear Complementarity Problems over Symmetric Cones
    Potra, Florian A.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 1403 - 1406
  • [17] Lyapunov-type least-squares problems over symmetric cones
    Luo, Ziyan
    Xiu, Naihua
    Kong, Lingchen
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (10) : 2498 - 2515
  • [18] Feasibility and solvability of Lyapunov-type linear programming over symmetric cones
    Luo, Ziyan
    Xiu, Naihua
    POSITIVITY, 2010, 14 (03) : 481 - 499
  • [19] Feasibility and solvability of Lyapunov-type linear programming over symmetric cones
    Ziyan Luo
    Naihua Xiu
    Positivity, 2010, 14 : 481 - 499
  • [20] Some global uniqueness and solvability results for linear complementarity problems over symmetric cones
    Gowda, M. Seetharama
    Sznajder, R.
    SIAM JOURNAL ON OPTIMIZATION, 2007, 18 (02) : 461 - 481