On abstract results of operator representation of frames in Hilbert spaces

被引:0
|
作者
Jahangir Cheshmavar
Ayyaneh Dallaki
Javad Baradaran
机构
[1] Payame Noor University,Department of Mathematics
[2] Jahrom University,Department of Mathematics
关键词
Frame; Iterated action; Operator representation; Riesz representation theorem; Hahn–Banach theorem; Spectrum of an operator; Primary 42C15; Secondary 47B99;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we give a multiplication operator representation of bounded self-adjoint operators T on a Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document} such that {Tkφ}k=0∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{T^k\varphi \}_{k=0}^{\infty }$$\end{document} is a frame for H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document}, for some φ∈H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi \in {\mathcal {H}}$$\end{document}. We state a necessary condition in order for a frame {fk}k=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{f_k\}_{k=1}^{\infty }$$\end{document} to have a representation of the form {Tkf1}k=0∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{T^kf_1\}_{k=0}^{\infty }$$\end{document}. Frame sequence {Tkφ}k=0∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{T^k\varphi \}_{k=0}^{\infty }$$\end{document} with the synthesis operator U, have also been characterized in terms of the behavior spectrum of U∗U|N(U)⊥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U^*U|_{N(U)^{\perp }}$$\end{document}. Next, using the operator response of an element with respect to a unit vector in H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document}, frames {fk}k=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{f_k\}_{k=1}^{\infty }$$\end{document} of the form {Tnf1}n=0∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{T^nf_{1}\}_{n=0}^{\infty }$$\end{document} are characterized. We also consider stability frames as {Tkφ}k=0∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{T^k\varphi \}_{k=0}^{\infty }$$\end{document}. Finally, we conclude this note by raising a conjecture connecting frame theory and operator theory.
引用
收藏
相关论文
共 50 条
  • [11] Operator characterizations and constructions of continuous g-frames in Hilbert spaces
    Fu, Yanling
    Zhang, Wei
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (12): : 2324 - 2339
  • [12] Operator Characterizations and Some Properties of g-Frames on Hilbert Spaces
    Guo, Xunxiang
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [13] Existence results for operator equations in abstract spaces and an application
    Heikkilä, S
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 292 (01) : 262 - 273
  • [14] SOME RESULTS ON CONTROLLED K-FRAMES IN HILBERT SPACES
    Nouri, M.
    Rahimi, A.
    Najafzadeh, Sh.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2018, 16 (01): : 62 - 74
  • [15] ON WEAVING FRAMES IN HILBERT SPACES
    Li, Dongwei
    Jiang, Jing
    Xu, Yuxiang
    OPERATORS AND MATRICES, 2023, 17 (03): : 809 - 822
  • [16] SURGERY OF FRAMES IN HILBERT SPACES
    Li, Dongwei
    Jiang, Jing
    OPERATORS AND MATRICES, 2022, 16 (01): : 75 - 85
  • [17] Hilbert–Schmidt Frames for Operators on Hilbert Spaces
    Farkhondeh Takhteh
    Morteza Mirzaee Azandaryani
    Iranian Journal of Science, 2023, 47 : 1679 - 1687
  • [18] GENERALIZED FRAMES IN HILBERT SPACES
    Najati, A.
    Rahimi, A.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2009, 35 (01) : 97 - 109
  • [19] Frames in Quaternionic Hilbert Spaces
    Sharma, Sumit Kumar
    Goel, Shashank
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2019, 15 (03) : 395 - 411
  • [20] CONTINUOUS FRAMES IN HILBERT SPACES
    Rahimi, A.
    Najati, A.
    Dehghan, Y. N.
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2006, 12 (02): : 170 - 182