On abstract results of operator representation of frames in Hilbert spaces

被引:0
|
作者
Jahangir Cheshmavar
Ayyaneh Dallaki
Javad Baradaran
机构
[1] Payame Noor University,Department of Mathematics
[2] Jahrom University,Department of Mathematics
关键词
Frame; Iterated action; Operator representation; Riesz representation theorem; Hahn–Banach theorem; Spectrum of an operator; Primary 42C15; Secondary 47B99;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we give a multiplication operator representation of bounded self-adjoint operators T on a Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document} such that {Tkφ}k=0∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{T^k\varphi \}_{k=0}^{\infty }$$\end{document} is a frame for H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document}, for some φ∈H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi \in {\mathcal {H}}$$\end{document}. We state a necessary condition in order for a frame {fk}k=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{f_k\}_{k=1}^{\infty }$$\end{document} to have a representation of the form {Tkf1}k=0∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{T^kf_1\}_{k=0}^{\infty }$$\end{document}. Frame sequence {Tkφ}k=0∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{T^k\varphi \}_{k=0}^{\infty }$$\end{document} with the synthesis operator U, have also been characterized in terms of the behavior spectrum of U∗U|N(U)⊥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U^*U|_{N(U)^{\perp }}$$\end{document}. Next, using the operator response of an element with respect to a unit vector in H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document}, frames {fk}k=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{f_k\}_{k=1}^{\infty }$$\end{document} of the form {Tnf1}n=0∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{T^nf_{1}\}_{n=0}^{\infty }$$\end{document} are characterized. We also consider stability frames as {Tkφ}k=0∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{T^k\varphi \}_{k=0}^{\infty }$$\end{document}. Finally, we conclude this note by raising a conjecture connecting frame theory and operator theory.
引用
收藏
相关论文
共 50 条
  • [1] On abstract results of operator representation of frames in Hilbert spaces
    Cheshmavar, Jahangir
    Dallaki, Ayyaneh
    Baradaran, Javad
    [J]. JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2023, 14 (02)
  • [2] STUDY ON OPERATOR REPRESENTATION OF FRAMES IN HILBERT SPACES
    Cheshmavar, Jahangir
    Dallaki, Ayyaneh
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2023, 85 (01): : 35 - 42
  • [3] STUDY ON OPERATOR REPRESENTATION OF FRAMES IN HILBERT SPACES
    Cheshmavar, Jahangir
    Dallaki, Ayyaneh
    [J]. UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2023, 85 (01): : 35 - 42
  • [4] Some results about operator perturbation of fusion frames in Hilbert spaces
    Li, Xue-Bin
    Yang, Shou-Zhi
    Zhu, Yu-Can
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 421 (02) : 1417 - 1427
  • [5] Operator representations of g-frames in Hilbert spaces
    Li, Dongwei
    Leng, Jinsong
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (09): : 1861 - 1877
  • [6] SOME RESULTS ON CONTROLLED FRAMES IN HILBERT SPACES
    Kamran MUSAZADEH
    Hassan KHANDANI
    [J]. Acta Mathematica Scientia, 2016, (03) : 655 - 665
  • [7] SOME RESULTS ON CONTROLLED FRAMES IN HILBERT SPACES
    Musazadeh, Kamran
    Khandani, Hassan
    [J]. ACTA MATHEMATICA SCIENTIA, 2016, 36 (03) : 655 - 665
  • [8] Some Properties of Operator Valued Frames in Quaternionic Hilbert Spaces
    Hong, Guoqing
    Li, Pengtong
    [J]. MATHEMATICS, 2023, 11 (01)
  • [9] Some results on g-frames in Hilbert spaces
    Abdollahi, Abdolaziz
    Rahimi, Elham
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2011, 35 (04) : 695 - 704
  • [10] Frames for the Solution of Operator Equations in Hilbert Spaces with Fixed Dual Pairing
    Balazs, Peter
    Harbrecht, Helmut
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2019, 40 (01) : 65 - 84