Anyons and the Bose-Fermi duality in the finite-temperature thirring model

被引:0
|
作者
N. Ilieva
W. Thirring
机构
[1] Universität Wien,Inst tut für Theoretische Physik
[2] Bulgarian Academy of Sciences,Institute for Nuclear Research and Nuclear Energy
来源
关键词
Cross Product; Symplectic Form; Current Algebra; Thirring Model; Local Gauge Transformation;
D O I
暂无
中图分类号
学科分类号
摘要
Solutions to the Thirring model are constructed in the framework of algebraic quantum field theory. Fermionic solutions exist for all positive temperatures only if the coupling constants is\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\lambda = \sqrt {2 (2n + 1) \pi } $$ \end{document}, n ∈ ℤ. These fermions are not equivalent and become canonical fields only forn=1. In the general case, the solutions are anyons. Different anyons (uncountably many) exist in orthogonal spaces and satisfy dynamic equations (of the Heisenberg “Urgleichung” type) characterized by corresponding values of the statistical parameter, which, in turn, is related to the coupling constant λ. The whole Hilbert space becomes nonseparable with a different Urgleichung satisfied in each sector. This feature is absent from any power expansion in λ, which, being related to the statistical parameter, definitely fails and never reveals the true structure of the theory. The correlation functions in the temperature state for canonically dressed fermions coincide with the ones for the bare fields. This is in agreement with the uniqueness of the τ-Kubo-Martin-Schwinger state over the canonical anticommutation relation algebra (τ being the shift automorphism). The α-anyon two-point function is computed and reproduces the previously known result for a scalar field.
引用
收藏
页码:1294 / 1314
页数:20
相关论文
共 50 条
  • [41] Observable vortex properties in finite-temperature Bose gases
    Allen, A. J.
    Zaremba, E.
    Barenghi, C. F.
    Proukakis, N. P.
    PHYSICAL REVIEW A, 2013, 87 (01):
  • [42] Finite-temperature momentum distribution of a trapped Fermi gas
    Chen, Qijin
    Regal, C. A.
    Jin, D. S.
    Levin, K.
    PHYSICAL REVIEW A, 2006, 74 (01):
  • [43] Finite-temperature phase diagram of a polarized Fermi condensate
    M. M. Parish
    F. M. Marchetti
    A. Lamacraft
    B. D. Simons
    Nature Physics, 2007, 3 : 124 - 128
  • [44] Hidden Caldeira-Leggett dissipation in a Bose-Fermi Kondo model
    Li, MR
    Le Hur, K
    Hofstetter, W
    PHYSICAL REVIEW LETTERS, 2005, 95 (08)
  • [45] Critical local-moment fluctuations in the Bose-Fermi Kondo model
    Zhu, LJ
    Si, QM
    PHYSICAL REVIEW B, 2002, 66 (02) : 1 - 15
  • [46] Numerical renormalization-group study of the Bose-Fermi Kondo model
    Glossop, MT
    Ingersent, K
    PHYSICAL REVIEW LETTERS, 2005, 95 (06)
  • [47] Finite-temperature phase diagram of a polarized Fermi condensate
    Parish, M. M.
    Marchetti, F. M.
    Lamacraft, A.
    Simons, B. D.
    NATURE PHYSICS, 2007, 3 (02) : 124 - 128
  • [48] ANALYSIS AND COMPUTATION FOR GROUND STATE SOLUTIONS OF BOSE-FERMI MIXTURES AT ZERO TEMPERATURE
    Cai, Yongyong
    Wang, Hanquan
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2013, 73 (02) : 757 - 779
  • [50] Non-Thomas-Fermi behaviour of a finite-temperature Bose-Einstein condensate in the presence of a thermal cloud
    Kouidri, S.
    Benarous, M.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2011, 44 (20)