Anyons and the Bose-Fermi duality in the finite-temperature thirring model

被引:0
|
作者
N. Ilieva
W. Thirring
机构
[1] Universität Wien,Inst tut für Theoretische Physik
[2] Bulgarian Academy of Sciences,Institute for Nuclear Research and Nuclear Energy
来源
关键词
Cross Product; Symplectic Form; Current Algebra; Thirring Model; Local Gauge Transformation;
D O I
暂无
中图分类号
学科分类号
摘要
Solutions to the Thirring model are constructed in the framework of algebraic quantum field theory. Fermionic solutions exist for all positive temperatures only if the coupling constants is\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\lambda = \sqrt {2 (2n + 1) \pi } $$ \end{document}, n ∈ ℤ. These fermions are not equivalent and become canonical fields only forn=1. In the general case, the solutions are anyons. Different anyons (uncountably many) exist in orthogonal spaces and satisfy dynamic equations (of the Heisenberg “Urgleichung” type) characterized by corresponding values of the statistical parameter, which, in turn, is related to the coupling constant λ. The whole Hilbert space becomes nonseparable with a different Urgleichung satisfied in each sector. This feature is absent from any power expansion in λ, which, being related to the statistical parameter, definitely fails and never reveals the true structure of the theory. The correlation functions in the temperature state for canonically dressed fermions coincide with the ones for the bare fields. This is in agreement with the uniqueness of the τ-Kubo-Martin-Schwinger state over the canonical anticommutation relation algebra (τ being the shift automorphism). The α-anyon two-point function is computed and reproduces the previously known result for a scalar field.
引用
下载
收藏
页码:1294 / 1314
页数:20
相关论文
共 50 条
  • [21] The Bose-Fermi Kondo model in an exactly solvable limit
    Dai, Jianhui
    Bolech, C. J.
    Si, Qimiao
    PHYSICA B-CONDENSED MATTER, 2008, 403 (5-9) : 1242 - 1244
  • [22] Three Sound Modes in a Bose-Fermi Superfluid Mixture at Finite Temperatures
    Ono, Yosuke
    Hatsuda, Rei
    Shiina, Kenta
    Mori, Hiroyuki
    Arahata, Emiko
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2019, 88 (03)
  • [23] Occupation number and fluctuations in the finite-temperature Bose-Hubbard model
    Plimak, LI
    Olsen, MK
    Fleischhauer, M
    PHYSICAL REVIEW A, 2004, 70 (01): : 013611 - 1
  • [24] Bose-Einstein condensation temperature of a trapped interacting Bose-Fermi gas mixture
    Ma, YL
    Chui, ST
    PHYSICAL REVIEW A, 2002, 66 (05): : 5
  • [25] Critical temperature of Bose-Einstein condensation in trapped atomic Bose-Fermi mixtures
    Albus, AP
    Giorgini, S
    Illuminati, F
    Viverit, L
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2002, 35 (23) : L511 - L519
  • [26] Finite-temperature trapped dipolar Bose gas
    Bisset, R. N.
    Baillie, D.
    Blakie, P. B.
    PHYSICAL REVIEW A, 2012, 86 (03):
  • [27] OPERATOR PRODUCT EXPANSION AND DUALITY AT FINITE-TEMPERATURE
    DOMINGUEZ, CA
    NUCLEAR PHYSICS B, 1995, : 463 - 466
  • [28] Bose-Einstein condensation temperature of a trapped interacting Bose-Fermi gas mixture
    Ma, Yong-Li
    Chui, Siu-Tat
    Physical Review A - Atomic, Molecular, and Optical Physics, 2002, 66 (05): : 1 - 053611
  • [29] Finite-temperature vortices in a rotating Fermi gas
    Klimin, S. N.
    Tempere, J.
    Verhelst, N.
    Milosevic, M. V.
    PHYSICAL REVIEW A, 2016, 94 (02)
  • [30] Finite-temperature evaluation of the Fermi density operator
    Gagel, F
    JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 139 (02) : 399 - 405