Riemannian metrics with prescribed volume and finite parts of Dirichlet spectrum

被引:0
|
作者
Xiang He
Zuoqin Wang
机构
[1] University of Science and Technology of China,School of Mathematical Sciences
来源
Calculus of Variations and Partial Differential Equations | 2024年 / 63卷
关键词
58C40; 58J50; 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the problem of prescribing Dirichlet eigenvalues on an arbitrary compact manifold M of dimension n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document} with a non-empty smooth boundary ∂M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial M$$\end{document}. We show that for any finite increasing sequence of real numbers 0<a1<a2≤a3≤⋯≤aN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<a_1<a_2 \le a_3 \le \cdots \le a_N$$\end{document} and any positive number V, there exists a Riemannian metric g on M such that Vol(M,g)=V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Vol}(M,g)=V$$\end{document} and λkD(M,g)=ak\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda ^\mathcal {D}_k(M,g)=a_k$$\end{document} for any integer 1≤k≤N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le k \le N$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] Volume growth and bounds for the essential spectrum for Dirichlet forms
    Haeseler, Sebastian
    Keller, Matthias
    Wojciechowski, Radoslaw K.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2013, 88 : 883 - 898
  • [22] RIEMANNIAN METRICS WITH THE PRESCRIBED CURVATURE TENSOR AND ALL ITS COVARIANT DERIVATIVES AT ONE-POINT
    KOWALSKI, O
    BELGER, M
    MATHEMATISCHE NACHRICHTEN, 1994, 168 : 209 - 225
  • [23] SHORT GEODESIC LOOPS ON COMPLETE RIEMANNIAN MANIFOLDS WITH A FINITE VOLUME
    Rotman, Regina
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (06) : 2881 - 2894
  • [24] STABILITY FOR DETERMINATION OF RIEMANNIAN METRICS BY SPECTRAL DATA AND DIRICHLET-TO-NEUMANN MAP LIMITED ON ARBITRARY SUBBOUNDARY
    Imanuvilov, Oleg Yu
    Yamamoto, Masahiro
    INVERSE PROBLEMS AND IMAGING, 2019, 13 (06) : 1213 - 1258
  • [25] A CRITERION FOR THE EXISTENCE ON A RIEMANNIAN MANIFOLD OF A NONTRIVIAL BOUNDED HARMONIC FUNCTION WITH THE DIRICHLET FINITE INTEGRAL
    GRIGORIAN, AA
    DOKLADY AKADEMII NAUK SSSR, 1987, 293 (03): : 529 - 531
  • [26] A Riemannian inexact Newton dogleg method for constructing a symmetric nonnegative matrix with prescribed spectrum
    Zhao, Zhi
    Yao, Teng-Teng
    Bai, Zheng-Jian
    Jin, Xiao-Qing
    NUMERICAL ALGORITHMS, 2023, 92 (03) : 1951 - 1981
  • [27] A Riemannian inexact Newton dogleg method for constructing a symmetric nonnegative matrix with prescribed spectrum
    Zhi Zhao
    Teng-Teng Yao
    Zheng-Jian Bai
    Xiao-Qing Jin
    Numerical Algorithms, 2023, 92 : 1951 - 1981
  • [28] Spectrum of light nuclei in a finite volume
    Yaron, R.
    Bazak, B.
    Schafer, M.
    Barnea, N.
    PHYSICAL REVIEW D, 2022, 106 (01)
  • [29] Finite-Volume Spectrum of π+ π+ and π+ π+ π+ Systems
    Mai, M.
    Doring, M.
    PHYSICAL REVIEW LETTERS, 2019, 122 (06)
  • [30] The Dirichlet-to-Neumann operator on rough domains with finite volume
    ter Elst, A. F. M.
    Narula, Varun
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2025,