On the Outer Independent Double Roman Domination Number

被引:0
|
作者
Doost Ali Mojdeh
Babak Samadi
Zehui Shao
Ismael G. Yero
机构
[1] University of Mazandaran,Department of Mathematics
[2] Guangzhou University,Institute of Computing Science and Technology
[3] Universidad de Cádiz,Departamento de Matemáticas
关键词
(Outer independent) double Roman domination number; Roman domination number; Vertex cover number; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
An outer independent (double) Roman dominating function is a (double) Roman dominating function f for which the set of vertices assigned 0 under f is independent. The outer independent (double) Roman domination number (γoidR(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{oidR}(G)$$\end{document}) γoiR(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{oiR}(G)$$\end{document} is the minimum weight taken over all outer independent (double) Roman dominating functions of G. A vertex cover number β(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta (G)$$\end{document} is the minimum size of any vertex cover sets of a graph G. In this work, we present some contributions to the study of outer independent double Roman domination in graphs. Characterizations of the families of all connected graphs with small outer independent double Roman domination numbers, and tight lower and upper bounds on this parameter are given. We also prove that the decision problem associated with γoidR(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{oidR}(G)$$\end{document} is NP-complete even when restricted to planar graphs with maximum degree at most four. We moreover prove that 2β(T)+1≤γoidR(T)≤3β(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\beta (T)+1\le \gamma _{oidR}(T)\le 3\beta (T)$$\end{document} for any tree T, and show that each integer between the lower and upper bounds is realizable. Finally, we give an exact formula for this parameter concerning the corona graphs.
引用
收藏
页码:1789 / 1803
页数:14
相关论文
共 50 条
  • [41] Relating the outer-independent total Roman domination number with some classical parameters of graphs
    Martínez, Abel Cabrera
    Kuziak, Dorota
    Yero, Ismael G.
    [J]. arXiv, 2021,
  • [42] Trees with Double Roman Domination Number Twice the Domination Number Plus Two
    H. Abdollahzadeh Ahangar
    J. Amjadi
    M. Chellali
    S. Nazari-Moghaddam
    S. M. Sheikholeslami
    [J]. Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 : 1081 - 1088
  • [43] Trees with Double Roman Domination Number Twice the Domination Number Plus Two
    Ahangar, H. Abdollahzadeh
    Amjadi, J.
    Chellali, M.
    Nazari-Moghaddam, S.
    Sheikholeslami, S. M.
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A3): : 1081 - 1088
  • [44] Algorithmic Aspects of the Independent 2-Rainbow Domination Number and Independent Roman {2}-Domination Number
    Poureidi, Abolfazl
    Rad, Nader Jafari
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (03) : 709 - 726
  • [45] Double outer-independent domination in graphs
    Krzywkowski, Marcin
    [J]. ARS COMBINATORIA, 2017, 134 : 193 - 207
  • [46] Disprove of a conjecture on the double Roman domination number
    Z. Shao
    R. Khoeilar
    H. Karami
    M. Chellali
    S. M. Sheikholeslami
    [J]. Aequationes mathematicae, 2024, 98 : 241 - 260
  • [47] A Note on the Double Roman Domination Number of Graphs
    Chen, Xue-gang
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2020, 70 (01) : 205 - 212
  • [48] An upper bound on the double Roman domination number
    Amjadi, J.
    Nazari-Moghaddam, S.
    Sheikholeslami, S. M.
    Volkmann, L.
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 36 (01) : 81 - 89
  • [49] An Upper Bound on the Double Roman Domination Number
    Lyes Ouldrabah
    Lutz Volkmann
    [J]. Bulletin of the Iranian Mathematical Society, 2021, 47 : 1315 - 1323
  • [50] An upper bound on the double Roman domination number
    J. Amjadi
    S. Nazari-Moghaddam
    S. M. Sheikholeslami
    L. Volkmann
    [J]. Journal of Combinatorial Optimization, 2018, 36 : 81 - 89