Weak Multiplicativity for Random Quantum Channels

被引:0
|
作者
Ashley Montanaro
机构
[1] University of Cambridge,Centre for Quantum Information and Quantum Foundations, Department of Applied Mathematics and Theoretical Physics
来源
关键词
Quantum Channel; Random Matrix Theory; Random Subspace; Partial Transpose; Positive Partial Transpose;
D O I
暂无
中图分类号
学科分类号
摘要
It is known that random quantum channels exhibit significant violations of multiplicativity of maximum output p-norms for any p > 1. In this work, we show that a weaker variant of multiplicativity nevertheless holds for these channels. For any constant p > 1, given a random quantum channel \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N}}$$\end{document} (i.e. a channel whose Stinespring representation corresponds to a random subspace S), we show that with high probability the maximum output p-norm of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N}^{\otimes n}}$$\end{document} decays exponentially with n. The proof is based on relaxing the maximum output ∞-norm of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N}}$$\end{document} to the operator norm of the partial transpose of the projector onto S, then calculating upper bounds on this quantity using ideas from random matrix theory.
引用
收藏
页码:535 / 555
页数:20
相关论文
共 50 条
  • [31] Estimation of Capacity for Channels Connected with Elementary Quantum Random Walks
    S. Grishin
    Lobachevskii Journal of Mathematics, 2024, 45 (10) : 5014 - 5019
  • [33] Spectral gaps of local quantum channels in the weak-dissipation limit
    Jacoby, J. Alexander
    Huse, David A.
    Gopalakrishnan, Sarang
    PHYSICAL REVIEW B, 2025, 111 (10)
  • [34] A note on random coding bounds for classical-quantum channels
    M. Dalai
    Problems of Information Transmission, 2017, 53 : 222 - 228
  • [35] Volume of the space of qubit-qubit channels and state transformations under random quantum channels
    Lovas, Attila
    Andai, Attila
    REVIEWS IN MATHEMATICAL PHYSICS, 2018, 30 (10)
  • [36] Random unitary qubit channels: entropy relations,private quantum channels and non-malleability
    Bouda, J.
    Koniorczyk, M.
    Varga, A.
    EUROPEAN PHYSICAL JOURNAL D, 2009, 53 (03): : 365 - 372
  • [37] Random unitary qubit channels: entropy relations,private quantum channels and non-malleability
    J. Bouda
    M. Koniorczyk
    A. Varga
    The European Physical Journal D, 2009, 53 : 365 - 372
  • [38] Random quantum channels II: Entanglement of random subspaces, Renyi entropy estimates and additivity problems
    Collins, Benoit
    Nechita, Ion
    ADVANCES IN MATHEMATICS, 2011, 226 (02) : 1181 - 1201
  • [39] OPTIMUM SIGNALS FOR DIGITAL QUANTUM COMMUNICATION CHANNELS WITH RANDOM PHASE.
    Federov, S.E.
    Mart'yanov, A.N.
    Radio Engineering and Electronic Physics (English translation of Radiotekhnika i Elektronika), 1981, 26 (08): : 36 - 39
  • [40] User-specified random sampling of quantum channels and its applications
    Sim, Jun Yan
    Suzuki, Jun
    Englert, Berthold-Georg
    Ng, Hui Khoon
    PHYSICAL REVIEW A, 2020, 101 (02)