Weak Multiplicativity for Random Quantum Channels

被引:0
|
作者
Ashley Montanaro
机构
[1] University of Cambridge,Centre for Quantum Information and Quantum Foundations, Department of Applied Mathematics and Theoretical Physics
来源
关键词
Quantum Channel; Random Matrix Theory; Random Subspace; Partial Transpose; Positive Partial Transpose;
D O I
暂无
中图分类号
学科分类号
摘要
It is known that random quantum channels exhibit significant violations of multiplicativity of maximum output p-norms for any p > 1. In this work, we show that a weaker variant of multiplicativity nevertheless holds for these channels. For any constant p > 1, given a random quantum channel \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N}}$$\end{document} (i.e. a channel whose Stinespring representation corresponds to a random subspace S), we show that with high probability the maximum output p-norm of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N}^{\otimes n}}$$\end{document} decays exponentially with n. The proof is based on relaxing the maximum output ∞-norm of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N}}$$\end{document} to the operator norm of the partial transpose of the projector onto S, then calculating upper bounds on this quantity using ideas from random matrix theory.
引用
收藏
页码:535 / 555
页数:20
相关论文
共 50 条
  • [21] Additivity and multiplicativity properties of some Gaussian channels for Gaussian inputs
    Hiroshima, T
    PHYSICAL REVIEW A, 2006, 73 (01):
  • [22] Multiplicativity of accessible fidelity and quantumness for sets of quantum states
    Audenaert, KMR
    Fuchs, CA
    King, C
    Winter, A
    QUANTUM INFORMATION & COMPUTATION, 2004, 4 (01) : 1 - 11
  • [23] On a Class of Quantum Channels, Open Random Walks and Recurrence
    Lardizabal, Carlos F.
    Souza, Rafael R.
    JOURNAL OF STATISTICAL PHYSICS, 2015, 159 (04) : 772 - 796
  • [24] On the Minimum Output Entropy of Random Orthogonal Quantum Channels
    Fukuda, Motohisa
    Nechita, Ion
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (02) : 1374 - 1384
  • [25] GAUSSIANIZATION AND EIGENVALUE STATISTICS FOR RANDOM QUANTUM CHANNELS (III)
    Collins, Benoit
    Nechita, Ion
    ANNALS OF APPLIED PROBABILITY, 2011, 21 (03): : 1136 - 1179
  • [26] On a Class of Quantum Channels, Open Random Walks and Recurrence
    Carlos F. Lardizabal
    Rafael R. Souza
    Journal of Statistical Physics, 2015, 159 : 772 - 796
  • [27] Spectral localization for quantum Hamiltonians with weak random delta interaction
    Borisov, Denis I.
    Taeufer, Matthias
    Veselic, Ivan
    COMPTES RENDUS MATHEMATIQUE, 2018, 356 (06) : 686 - 691
  • [28] Multiplicativity of maximal output purities of Gaussian channels under Gaussian inputs
    Serafini, A
    Eisert, J
    Wolf, MM
    PHYSICAL REVIEW A, 2005, 71 (01):
  • [29] ARE THE WEAK CHANNELS REALLY WEAK?
    Piasecki, E.
    Trzcinska, A.
    Gawlikowicz, W.
    Jastrzekski, J.
    Keeley, N.
    Kisielinski, M.
    Kliczewski, S.
    Kordyasz, A.
    Kowalczyk, M.
    Khlebnikov, S.
    Koshchiy, E.
    Kozulin, E.
    Krgulski, T.
    Lotkiev, T.
    Mutterer, M.
    Piasecki, K.
    Piorkowska, A.
    Rusek, K.
    Staudt, A.
    Strojek, I.
    Trzaska, W. H.
    Sillanpaa, M.
    Smirnov, S.
    Tiourin, G.
    Hagino, K.
    Rowley, N.
    ACTA PHYSICA POLONICA B, 2009, 40 (03): : 849 - 852
  • [30] Eigenvalue and Entropy Statistics for Products of Conjugate Random Quantum Channels
    Collins, Benoit
    Nechita, Ion
    ENTROPY, 2010, 12 (06) : 1612 - 1631