Weak Multiplicativity for Random Quantum Channels

被引:0
|
作者
Ashley Montanaro
机构
[1] University of Cambridge,Centre for Quantum Information and Quantum Foundations, Department of Applied Mathematics and Theoretical Physics
来源
关键词
Quantum Channel; Random Matrix Theory; Random Subspace; Partial Transpose; Positive Partial Transpose;
D O I
暂无
中图分类号
学科分类号
摘要
It is known that random quantum channels exhibit significant violations of multiplicativity of maximum output p-norms for any p > 1. In this work, we show that a weaker variant of multiplicativity nevertheless holds for these channels. For any constant p > 1, given a random quantum channel \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N}}$$\end{document} (i.e. a channel whose Stinespring representation corresponds to a random subspace S), we show that with high probability the maximum output p-norm of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N}^{\otimes n}}$$\end{document} decays exponentially with n. The proof is based on relaxing the maximum output ∞-norm of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N}}$$\end{document} to the operator norm of the partial transpose of the projector onto S, then calculating upper bounds on this quantity using ideas from random matrix theory.
引用
收藏
页码:535 / 555
页数:20
相关论文
共 50 条
  • [1] Weak Multiplicativity for Random Quantum Channels
    Montanaro, Ashley
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 319 (02) : 535 - 555
  • [2] On the multiplicativity hypothesis for quantum communication channels
    Amosov, GG
    Holevo, AS
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2002, 47 (01) : 123 - 127
  • [3] Additivity/multiplicativity problems for quantum communication channels
    Amosov, GG
    Holevo, AS
    Werner, RF
    QUANTUM COMMUNICATION, COMPUTING, AND MEASUREMENT 3, 2001, : 3 - 10
  • [4] On the multiplicativity of quantum cat maps
    Mezzadri, F
    NONLINEARITY, 2002, 15 (03) : 905 - 922
  • [5] Generating random quantum channels
    Kukulski, Ryszard
    Nechita, Ion
    Pawela, Tukasz
    Puchala, Zbigniew
    Zyczkowski, Karol
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (06)
  • [6] Primitivity for random quantum channels
    Bai, Jing
    Wang, Jianquan
    Yin, Zhi
    QUANTUM INFORMATION PROCESSING, 2024, 23 (02)
  • [7] Random Covariant Quantum Channels
    Nechita, Ion
    Park, Sang-Jun
    ANNALES HENRI POINCARE, 2025,
  • [8] Primitivity for random quantum channels
    Jing Bai
    Jianquan Wang
    Zhi Yin
    Quantum Information Processing, 23
  • [9] QUANTUM GAUSSIAN CHANNELS WITH WEAK MEASUREMENTS
    Tamir, Boaz
    Cohen, Eliahu
    QUANTUM INFORMATION & COMPUTATION, 2015, 15 (13-14) : 1185 - 1196
  • [10] Quantum gaussian channels with weak measurements
    Bar-Ilan University, Ramat-Gan, Israel
    不详
    Quantum Inf. Comput., 13-14 (1185-1196):