Measurement-device-independent quantum dialogue based on hyperentanglement

被引:0
|
作者
Kai-Qi Han
Lan Zhou
Wei Zhong
Yu-Bo Sheng
机构
[1] Nanjing University of Posts and Telecommunications,Institute of Quantum Information and Technology
[2] Nanjing University of Posts and Telecommunications,School of Science
[3] Nanjing University of Posts and Telecommunications,College of Electronic and Optical Engineering & College of Microelectronics
来源
关键词
Measurement-device-independent quantum dialogue; Hyperentanglement; Hyperentangled Bell-state measurement;
D O I
暂无
中图分类号
学科分类号
摘要
Quantum dialogue (QD) is a quantum communication mode which enables two communication parties to exchange their secret messages simultaneously. In this paper, we propose a measurement-device-independent quantum dialogue (MDI-QD) protocol using the polarization–spatial-mode hyperentanglement. The protocol can eliminate the security loopholes related to measurement devices and the information leakage. Comparing with previous MDI-QD protocol, our MDI-QD protocol has higher channel capacity. Two communication parties can exchange 4 bits of messages per hyperentangled photon pair. Moreover, for promoting its practical application, we try to use the practical linear-optical partial hyperentangled Bell-state measurement in our MDI-QD protocol, with which the parties can exchange 3 bits of messages per hyperentangled photon pair. Our high-capacity MDI-QD protocol has application potential in future quantum communication field.
引用
收藏
相关论文
共 50 条
  • [21] Satellite-based measurement-device-independent quantum key distribution
    Liang, Wentao
    Jiao, Rongzhen
    NEW JOURNAL OF PHYSICS, 2020, 22 (08):
  • [22] Chip-based measurement-device-independent quantum key distribution
    Semenenko, Henry
    Sibson, Philip
    Hart, Andy
    Thompson, Mark G.
    Rarity, John G.
    Erven, Chris
    OPTICA, 2020, 7 (03): : 238 - 242
  • [23] Measurement-device-independent quantum key agreement based on entanglement swapping
    Yu-Guang Yang
    Rui-Chen Huang
    Guang-Bao Xu
    Yi-Hua Zhou
    Wei-Min Shi
    Dan Li
    Quantum Information Processing, 22
  • [24] Measurement-device-independent entanglement-based quantum key distribution
    Yang, Xiuqing
    Wei, Kejin
    Ma, Haiqiang
    Sun, Shihai
    Liu, Hongwei
    Yin, Zhenqiang
    Li, Zuohan
    Lian, Shibin
    Du, Yungang
    Wu, Lingan
    PHYSICAL REVIEW A, 2016, 93 (05)
  • [25] Measurement-device-independent quantum communication without encryption
    Peng-Hao Niu
    Zeng-Rong Zhou
    Zai-Sheng Lin
    Yu-Bo Sheng
    Liu-Guo Yin
    Gui-Lu Long
    Science Bulletin, 2018, 63 (20) : 1345 - 1350
  • [26] Entanglement Measurement-Device-Independent Quantum Key Distribution
    Alshowkan, Muneer
    Elleithy, Khaled
    2017 IEEE LONG ISLAND SYSTEMS, APPLICATIONS AND TECHNOLOGY CONFERENCE (LISAT), 2017,
  • [27] Measurement-device-independent quantum secure direct communication
    Zhou, ZengRong
    Sheng, YuBo
    Niu, PengHao
    Yin, LiuGuo
    Long, GuiLu
    Hanzo, Lajos
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2020, 63 (03)
  • [28] Deterministic measurement-device-independent quantum secret sharing
    Gao, ZiKai
    Li, Tao
    Li, ZhenHua
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2020, 63 (12)
  • [29] Experimental measurement-device-independent quantum digital signatures
    G. L. Roberts
    M. Lucamarini
    Z. L. Yuan
    J. F. Dynes
    L. C. Comandar
    A. W. Sharpe
    A. J. Shields
    M. Curty
    I. V. Puthoor
    E. Andersson
    Nature Communications, 8
  • [30] Experimental Measurement-Device-Independent Quantum Key Distribution
    Liu, Yang
    Chen, Teng-Yun
    Wang, Liu-Jun
    Liang, Hao
    Shentu, Guo-Liang
    Wang, Jian
    Cui, Ke
    Yin, Hua-Lei
    Liu, Nai-Le
    Li, Li
    Ma, Xiongfeng
    Pelc, Jason S.
    Fejer, M. M.
    Peng, Cheng-Zhi
    Zhang, Qiang
    Pan, Jian-Wei
    PHYSICAL REVIEW LETTERS, 2013, 111 (13)