Carleman Estimates and Absence of Embedded Eigenvalues

被引:0
|
作者
Herbert Koch
Daniel Tataru
机构
[1] Universität Dortmund,Fachbereich Mathematik
[2] University of California,Department of Mathematics
来源
关键词
Poisson Bracket; Gradient Potential; Positive Eigenvalue; Unit Scale; Unique Continuation;
D O I
暂无
中图分类号
学科分类号
摘要
Let L = −Δ− W be a Schrödinger operator with a potential \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W\in L^{\frac{n+1}{2}}(\mathbb{R}^n)$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \geq 2$$\end{document}. We prove that there is no positive eigenvalue. The main tool is an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p}-L^{p^\prime}$$\end{document} Carleman type estimate, which implies that eigenfunctions to positive eigenvalues must be compactly supported. The Carleman estimate builds on delicate dispersive estimates established in [7]. We also consider extensions of the result to variable coefficient operators with long range and short range potentials and gradient potentials.
引用
收藏
页码:419 / 449
页数:30
相关论文
共 50 条
  • [41] Stability for inverse source problems by Carleman estimates
    Huang, X.
    Yu Imanuvilov, O.
    Yamamoto, M.
    [J]. INVERSE PROBLEMS, 2020, 36 (12)
  • [42] Carleman estimates and inverse problems for Dirac operators
    Salo, Mikko
    Tzou, Leo
    [J]. MATHEMATISCHE ANNALEN, 2009, 344 (01) : 161 - 184
  • [43] Carleman estimates and inverse problems for Dirac operators
    Mikko Salo
    Leo Tzou
    [J]. Mathematische Annalen, 2009, 344 : 161 - 184
  • [44] CARLEMAN AND OBSERVABILITY ESTIMATES FOR STOCHASTIC WAVE EQUATIONS
    Zhang, Xu
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (02) : 851 - 868
  • [45] Carleman estimates for a class of degenerate parabolic operators
    Cannarsa, P.
    Martinez, P.
    Vancostenoble, J.
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (01) : 1 - 19
  • [46] Carleman estimates and boundedness of associated multiplier operators
    Jeong, Eunhee
    Kwon, Yehyun
    Lee, Sanghyuk
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2022, 47 (04) : 774 - 796
  • [47] Discrete Carleman estimates and three balls inequalities
    Fernandez-Bertolin, Aingeru
    Roncal, Luz
    Rueland, Angkana
    Stan, Diana
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (06)
  • [48] Uniqueness properties for discrete equations and Carleman estimates
    Fernandez Bertolin, Aingeru
    Vega, Luis
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (11) : 4853 - 4869
  • [49] Sharp Lp Carleman estimates and unique continuation
    Ferreira, DD
    [J]. DUKE MATHEMATICAL JOURNAL, 2005, 129 (03) : 503 - 550
  • [50] CARLEMAN TYPE ESTIMATES IN AN ANISOTROPIC CASE AND APPLICATIONS
    ISAKOV, V
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 105 (02) : 217 - 238