Carleman estimates and inverse problems for Dirac operators

被引:49
|
作者
Salo, Mikko [1 ]
Tzou, Leo [2 ]
机构
[1] Univ Helsinki, Dept Math & Stat, Helsinki, Finland
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
芬兰科学院;
关键词
BOUNDARY-VALUE PROBLEM; UNIQUE CONTINUATION; GLOBAL UNIQUENESS; RECONSTRUCTION; ELASTICITY;
D O I
10.1007/s00208-008-0301-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider limiting Carleman weights for Dirac operators and prove corresponding Carleman estimates. In particular, we show that limiting Carleman weights for the Laplacian also serve as limiting weights for Dirac operators. As an application we consider the inverse problem of recovering a Lipschitz continuous magnetic field and electric potential from boundary measurements for the Pauli Dirac operator.
引用
收藏
页码:161 / 184
页数:24
相关论文
共 50 条