INVERSE PROBLEMS AND CARLEMAN ESTIMATES

被引:244
|
作者
KLIBANOV, MV
机构
[1] Dept. of Maths., North Carolina Univ., Charlotte, NC
关键词
D O I
10.1088/0266-5611/8/4/009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe a method for proving global uniqueness theorems for one broad class of multidimensional coefficient inverse problems. This method is based on Carleman estimates, and it does not depend essentially on the order or type of differential operator.
引用
收藏
页码:575 / 596
页数:22
相关论文
共 50 条
  • [1] Carleman Estimates and Applications to Inverse Problems
    Victor Isakov
    [J]. Milan Journal of Mathematics, 2004, 72 (1) : 249 - 271
  • [2] Stability for inverse source problems by Carleman estimates
    Huang, X.
    Yu Imanuvilov, O.
    Yamamoto, M.
    [J]. INVERSE PROBLEMS, 2020, 36 (12)
  • [3] Carleman estimates and inverse problems for Dirac operators
    Salo, Mikko
    Tzou, Leo
    [J]. MATHEMATISCHE ANNALEN, 2009, 344 (01) : 161 - 184
  • [4] Carleman estimates and inverse problems for Dirac operators
    Mikko Salo
    Leo Tzou
    [J]. Mathematische Annalen, 2009, 344 : 161 - 184
  • [5] THE CARLEMAN ESTIMATES AND INVERSE PROBLEMS FOR HYPERBOLIC-EQUATIONS
    KHAIDAROV, A
    [J]. DOKLADY AKADEMII NAUK SSSR, 1984, 279 (04): : 817 - 820
  • [6] CARLEMAN ESTIMATES FOR VOLTERRA OPERATORS AND UNIQUENESS OF INVERSE PROBLEMS
    BUKHGEIM, AL
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 1984, 25 (01) : 43 - 50
  • [7] CARLEMAN ESTIMATES FOR A MAGNETOHYDRODYNAMICS SYSTEM AND APPLICATION TO INVERSE SOURCE PROBLEMS
    Huang, Xinchi
    Yamamoto, Masahiro
    [J]. MATHEMATICAL CONTROL AND RELATED FIELDS, 2022, : 470 - 499
  • [8] Partial data inverse problems for Maxwell equations via Carleman estimates
    Chung, Francis J.
    Ola, Petri
    Salo, Mikko
    Tzou, Leo
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (03): : 605 - 624
  • [9] Carleman estimates and some inverse problems for the coupled quantitative thermoacoustic equations by boundary data. Part I: Carleman estimates
    Li, Shumin
    Shang, Yunxia
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2022, 30 (05): : 621 - 658
  • [10] Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems
    Klibanov, Michael V.
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2013, 21 (04): : 477 - 560