Poisson Bracket;
Gradient Potential;
Positive Eigenvalue;
Unit Scale;
Unique Continuation;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let L = −Δ− W be a Schrödinger operator with a potential
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$W\in L^{\frac{n+1}{2}}(\mathbb{R}^n)$$\end{document},
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n \geq 2$$\end{document}. We prove that there is no positive eigenvalue. The main tool is an
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^{p}-L^{p^\prime}$$\end{document} Carleman type estimate, which implies that eigenfunctions to positive eigenvalues must be compactly supported. The Carleman estimate builds on delicate dispersive estimates established in [7]. We also consider extensions of the result to variable coefficient operators with long range and short range potentials and gradient potentials.
机构:
Univ Bordeaux, Inst Math Bordeaux, 351 Cours Liberat, F-33405 Talence, FranceUniv Bordeaux, Inst Math Bordeaux, 351 Cours Liberat, F-33405 Talence, France
Dimassi, Mouez
Kawamoto, Masaki
论文数: 0引用数: 0
h-index: 0
机构:
Ehime Univ, Grad Sch Sci & Engn, Dept Prod Engn, 3 Bunkyo Cho, Matsuyama, Ehime 7908577, JapanUniv Bordeaux, Inst Math Bordeaux, 351 Cours Liberat, F-33405 Talence, France
Kawamoto, Masaki
Petkov, Vesselin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bordeaux, Inst Math Bordeaux, 351 Cours Liberat, F-33405 Talence, FranceUniv Bordeaux, Inst Math Bordeaux, 351 Cours Liberat, F-33405 Talence, France
机构:
UPV, Ikerbasque & Univ Pais Vasco, EHU, Euskal Herriko Unibertsitatea, Aptdo 644, Bilbao 48080, SpainUPV, Ikerbasque & Univ Pais Vasco, EHU, Euskal Herriko Unibertsitatea, Aptdo 644, Bilbao 48080, Spain
Cossetti, Lucrezia
Fanelli, Luca
论文数: 0引用数: 0
h-index: 0
机构:
UPV, Ikerbasque & Univ Pais Vasco, EHU, Euskal Herriko Unibertsitatea, Aptdo 644, Bilbao 48080, Spain
Basque Ctr Appl Math, BCAM, Mazarredo 14, E-48009 Bilbao, SpainUPV, Ikerbasque & Univ Pais Vasco, EHU, Euskal Herriko Unibertsitatea, Aptdo 644, Bilbao 48080, Spain
Fanelli, Luca
Krejcirik, David
论文数: 0引用数: 0
h-index: 0
机构:
Czech Tech Univ, Fac Nucl Sci & Phys Engn, Trojanova 13, Prague 2, Czech RepublicUPV, Ikerbasque & Univ Pais Vasco, EHU, Euskal Herriko Unibertsitatea, Aptdo 644, Bilbao 48080, Spain