Carleman Estimates and Absence of Embedded Eigenvalues

被引:0
|
作者
Herbert Koch
Daniel Tataru
机构
[1] Universität Dortmund,Fachbereich Mathematik
[2] University of California,Department of Mathematics
来源
关键词
Poisson Bracket; Gradient Potential; Positive Eigenvalue; Unit Scale; Unique Continuation;
D O I
暂无
中图分类号
学科分类号
摘要
Let L = −Δ− W be a Schrödinger operator with a potential \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W\in L^{\frac{n+1}{2}}(\mathbb{R}^n)$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \geq 2$$\end{document}. We prove that there is no positive eigenvalue. The main tool is an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p}-L^{p^\prime}$$\end{document} Carleman type estimate, which implies that eigenfunctions to positive eigenvalues must be compactly supported. The Carleman estimate builds on delicate dispersive estimates established in [7]. We also consider extensions of the result to variable coefficient operators with long range and short range potentials and gradient potentials.
引用
收藏
页码:419 / 449
页数:30
相关论文
共 50 条
  • [1] Carleman estimates and absence of embedded eigenvalues
    Koch, Herbert
    Tataru, Daniel
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 267 (02) : 419 - 449
  • [2] Absence of embedded eigenvalues for Riemannian Laplacians
    Ito, K.
    Skibsted, E.
    [J]. ADVANCES IN MATHEMATICS, 2013, 248 : 945 - 962
  • [3] Absence of embedded eigenvalues of Pauli and Dirac operators
    Hundertmark, Dirk
    Kovarik, Hynek
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (04)
  • [4] Absence of embedded eigenvalues for translationally invariant magnetic Laplacians
    Raymond, Nicolas
    Royer, Julien
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (07)
  • [5] Carleman Parabola and the Eigenvalues of Elliptic Operators
    Kostin, A. B.
    [J]. DIFFERENTIAL EQUATIONS, 2018, 54 (03) : 318 - 329
  • [6] Carleman Parabola and the Eigenvalues of Elliptic Operators
    A. B. Kostin
    [J]. Differential Equations, 2018, 54 : 318 - 329
  • [7] Absence of embedded eigenvalues for Hamiltonian with crossed magnetic and electric fields
    Dimassi, Mouez
    Kawamoto, Masaki
    Petkov, Vesselin
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2021, 33 (06)
  • [8] On absence of embedded eigenvalues for Schrodinger operators with perturbed periodic potentials
    Kuchment, P
    Vainberg, B
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2000, 25 (9-10) : 1809 - 1826
  • [9] Absence of embedded eigenvalues for non-local Schrodinger operators
    Ishida, Atsuhide
    Lorinczi, Jozsef
    Sasaki, Itaru
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2022, 22 (04)
  • [10] Uniform resolvent estimates and absence of eigenvalues of biharmonic operators with complex potentials
    Cossetti, Lucrezia
    Fanelli, Luca
    Krejcirik, David
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (12)