Absence of embedded eigenvalues of Pauli and Dirac operators

被引:0
|
作者
Hundertmark, Dirk [1 ,2 ]
Kovarik, Hynek [3 ]
机构
[1] Karlsruhe Inst Technol, Inst Anal, Dept Math, D-76128 Karlsruhe, Germany
[2] Univ Illinois, Dept Math, 1409 W Green St, Urbana, IL 61801 USA
[3] Univ Brescia, Sez Matemat, DICATAM, Via Branze 38, I-25123 Brescia, Italy
关键词
Pauli operator; Dirac operator; Embedded eigenvalues; POSITIVE EIGENVALUES; SCHRODINGER-OPERATORS; BOUNDS;
D O I
10.1016/j.jfa.2023.110288
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider eigenvalues of the Pauli operator in R3 embedded in the continuous spectrum. In our main result we prove the absence of such eigenvalues above a threshold which depends on the asymptotic behavior of the magnetic and electric field at infinity. We show moreover that the decay conditions on the magnetic and electric field are sharp. Analogous results are obtained for purely magnetic Dirac operators.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:35
相关论文
共 50 条
  • [1] Absence of eigenvalues of Dirac type operators
    Okaji, T
    [J]. PARTIAL DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS: IN MEMORY OF JEAN LERAY, 2003, 52 : 157 - 176
  • [2] Absence of Eigenvalues of Dirac and Pauli Hamiltonians via the Method of Multipliers
    Cossetti, Lucrezia
    Fanelli, Luca
    Krejcirik, David
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 379 (02) : 633 - 691
  • [3] Absence of Eigenvalues of Dirac and Pauli Hamiltonians via the Method of Multipliers
    Lucrezia Cossetti
    Luca Fanelli
    David Krejčiřík
    [J]. Communications in Mathematical Physics, 2020, 379 : 633 - 691
  • [4] Absence of eigenvalues of Dirac operators with potentials diverging at infinity
    Kalf, H
    Okaji, T
    Yamada, O
    [J]. MATHEMATISCHE NACHRICHTEN, 2003, 259 : 19 - 41
  • [5] On Dirac and Pauli operators
    Zilbergleit, LV
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2002, 74 (01) : 1 - 34
  • [6] On Dirac and Pauli Operators
    Lev V. Zilbergleit
    [J]. Acta Applicandae Mathematica, 2002, 74 : 1 - 34
  • [7] Sharp bound for embedded eigenvalues of Dirac operators with decaying potentials
    Khapre, Vishwam
    Lyu, Kang
    Yu, Andrew
    [J]. NEW YORK JOURNAL OF MATHEMATICS, 2022, 28 : 1317 - 1328
  • [8] Absence of embedded eigenvalues for non-local Schrodinger operators
    Ishida, Atsuhide
    Lorinczi, Jozsef
    Sasaki, Itaru
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2022, 22 (04)
  • [9] On absence of embedded eigenvalues for Schrodinger operators with perturbed periodic potentials
    Kuchment, P
    Vainberg, B
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2000, 25 (9-10) : 1809 - 1826