Sharp bound for embedded eigenvalues of Dirac operators with decaying potentials

被引:0
|
作者
Khapre, Vishwam [1 ]
Lyu, Kang [2 ]
Yu, Andrew [3 ]
机构
[1] Texas A&M Univ, Dept Math, Coll Stn, TX 77843 USA
[2] Nanjing Univ Sci & Technol, Sch Math & Stat, Nanjing 210094, Jiangsu, Peoples R China
[3] Phillips Acad, 180 Main St, Andover, MA 01810 USA
来源
关键词
Dirac operators; canonical form; embedded eigenvalues; essential spectrum; INVERSE SPECTRAL PROBLEMS; POINT SPECTRUM; SCHRODINGER;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study eigenvalues of the Dirac operator with canonical formL(p,q) ((u)(v)) = ((0)(-1)(1)(0))d/dt((u)(v))+((-p)(q) (q)(p)) ((u)(v)),where p and q are real functions. Under the assumption thatlim sup(x ->infinity) (x)root p(2)(x) + q(2)(x) < infinity,the essential spectrum of L-p,L-q is (-infinity, infinity). We prove that L-p,L-q has no eigen-values iflim sup(x ->infinity) (x)root Ip(2)(x) + q(2)(x) < 1/2.Given any A >= 1/2 and any lambda is an element of R, we construct functions p and q such that lim sup(x ->infinity)(x)root p(2)(x) + q(2)(x) = A and lambda is an eigenvalue of the corresponding Dirac operator L-p,L-q. We also construct functions p and q so that the corresponding Dirac operator L-p,L-q has any prescribed set (finitely or countably many) of eigenvalues.
引用
收藏
页码:1317 / 1328
页数:12
相关论文
共 50 条