Generalized quiver varieties and triangulated categories

被引:0
|
作者
Sarah Scherotzke
机构
[1] University of Münster,Mathematisches Institut
来源
Mathematische Zeitschrift | 2019年 / 292卷
关键词
Nakajima quiver varieties; Cluster algebra; Monoidal categorification; 13F60; 16G70; 18E30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce generalized quiver varieties which include as special cases classical and cyclic quiver varieties. The geometry of generalized quiver varieties is governed by a finitely generated algebra P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {P}}}$$\end{document}: the algebra P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {P}}}$$\end{document} is self-injective if the quiver Q is of Dynkin type, and coincides with the preprojective algebra in the case of classical quiver varieties. We show that in the Dynkin case the strata of generalized quiver varieties are in bijection with the isomorphism classes of objects in projP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {proj}}\,{{\mathcal {P}}}$$\end{document}, and that their degeneration order coincides with the Jensen–Su–Zimmermann’s degeneration order on the triangulated category projP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {proj}}\,{{\mathcal {P}}}$$\end{document}. Furthermore, we prove that classical quiver varieties of type An\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_n$$\end{document} can be realized as moduli spaces of representations of an algebra S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {S}}}$$\end{document}.
引用
收藏
页码:1453 / 1478
页数:25
相关论文
共 50 条
  • [41] Locally finite triangulated categories
    Xiao, J
    Zhu, B
    JOURNAL OF ALGEBRA, 2005, 290 (02) : 473 - 490
  • [42] Homological Systems in Triangulated Categories
    Mendoza, O.
    Santiago, V.
    APPLIED CATEGORICAL STRUCTURES, 2016, 24 (01) : 1 - 35
  • [43] Dimension and level of triangulated categories
    Yang, Xiaoyan
    Shen, Jingwen
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (07)
  • [44] Smoothing of quiver varieties
    Altmann, Klaus
    van Straten, Duco
    MANUSCRIPTA MATHEMATICA, 2009, 129 (02) : 211 - 230
  • [45] Remarks on quiver varieties
    Lusztig, G
    DUKE MATHEMATICAL JOURNAL, 2000, 105 (02) : 239 - 265
  • [46] Central Support for Triangulated Categories
    Krause, Henning y
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (22) : 19773 - 19800
  • [47] MODEL STRUCTURES ON TRIANGULATED CATEGORIES
    Yang, Xiaoyan
    GLASGOW MATHEMATICAL JOURNAL, 2015, 57 (02) : 263 - 284
  • [48] LAGRANGIAN SHADOWS AND TRIANGULATED CATEGORIES
    Biran, Paul
    Cornea, Octav
    Shelukhin, Egor
    ASTERISQUE, 2021, (426) : 7 - +
  • [49] Cohomologically triangulated categories I
    Baues, H. -J.
    Muro, F.
    JOURNAL OF K-THEORY, 2008, 1 (01) : 3 - 48
  • [50] Scalar Extensions of Triangulated Categories
    Sosna, Pawel
    APPLIED CATEGORICAL STRUCTURES, 2014, 22 (01) : 211 - 227