In this paper, we introduce generalized quiver varieties which include as special cases classical and cyclic quiver varieties. The geometry of generalized quiver varieties is governed by a finitely generated algebra P\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathcal {P}}}$$\end{document}: the algebra P\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathcal {P}}}$$\end{document} is self-injective if the quiver Q is of Dynkin type, and coincides with the preprojective algebra in the case of classical quiver varieties. We show that in the Dynkin case the strata of generalized quiver varieties are in bijection with the isomorphism classes of objects in projP\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text {proj}}\,{{\mathcal {P}}}$$\end{document}, and that their degeneration order coincides with the Jensen–Su–Zimmermann’s degeneration order on the triangulated category projP\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text {proj}}\,{{\mathcal {P}}}$$\end{document}. Furthermore, we prove that classical quiver varieties of type An\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$A_n$$\end{document} can be realized as moduli spaces of representations of an algebra S\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathcal {S}}}$$\end{document}.
机构:
St Petersburg State Univ, Dept Math & Mech, Univ Skii Pr 28, St Petersburg 198504, RussiaSt Petersburg State Univ, Dept Math & Mech, Univ Skii Pr 28, St Petersburg 198504, Russia
Bondarko, M. V.
Sosnilo, V. A.
论文数: 0引用数: 0
h-index: 0
机构:
St Petersburg State Univ, Dept Math & Mech, Univ Skii Pr 28, St Petersburg 198504, RussiaSt Petersburg State Univ, Dept Math & Mech, Univ Skii Pr 28, St Petersburg 198504, Russia