Generalized quiver varieties and triangulated categories

被引:0
|
作者
Sarah Scherotzke
机构
[1] University of Münster,Mathematisches Institut
来源
Mathematische Zeitschrift | 2019年 / 292卷
关键词
Nakajima quiver varieties; Cluster algebra; Monoidal categorification; 13F60; 16G70; 18E30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce generalized quiver varieties which include as special cases classical and cyclic quiver varieties. The geometry of generalized quiver varieties is governed by a finitely generated algebra P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {P}}}$$\end{document}: the algebra P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {P}}}$$\end{document} is self-injective if the quiver Q is of Dynkin type, and coincides with the preprojective algebra in the case of classical quiver varieties. We show that in the Dynkin case the strata of generalized quiver varieties are in bijection with the isomorphism classes of objects in projP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {proj}}\,{{\mathcal {P}}}$$\end{document}, and that their degeneration order coincides with the Jensen–Su–Zimmermann’s degeneration order on the triangulated category projP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {proj}}\,{{\mathcal {P}}}$$\end{document}. Furthermore, we prove that classical quiver varieties of type An\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_n$$\end{document} can be realized as moduli spaces of representations of an algebra S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {S}}}$$\end{document}.
引用
收藏
页码:1453 / 1478
页数:25
相关论文
共 50 条
  • [1] Generalized quiver varieties and triangulated categories
    Scherotzke, Sarah
    MATHEMATISCHE ZEITSCHRIFT, 2019, 292 (3-4) : 1453 - 1478
  • [2] Graded quiver varieties and derived categories
    Keller, Bernhard
    Scherotzke, Sarah
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 713 : 85 - 127
  • [3] Braid cobordisms, triangulated categories, and flag varieties
    Khovanov, Mikhail
    Thomas, Richard
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2007, 9 (02) : 19 - 94
  • [4] ON CATEGORIES O OF QUIVER VARIETIES OVERLYING THE BOUQUET GRAPHS
    Tsvelikhovskiy, Boris
    REPRESENTATION THEORY, 2023, 27 : 431 - 472
  • [5] Triangulated surfaces in triangulated categories
    Dyckerhoff, Tobias
    Kapranov, Mikhail
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2018, 20 (06) : 1473 - 1524
  • [7] SUBFACTOR CATEGORIES OF TRIANGULATED CATEGORIES
    Xu, Jinde
    Zhou, Panyue
    Ouyang, Baiyu
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (12) : 5168 - 5182
  • [8] Triangulated functors and localizations of triangulated categories
    TRIANGULATED CATEGORIES, 2001, (148): : 73 - 101
  • [9] LOCALIZATION OF TRIANGULATED CATEGORIES AND DERIVED CATEGORIES
    MIYACHI, J
    JOURNAL OF ALGEBRA, 1991, 141 (02) : 463 - 483
  • [10] Ideal mutations in triangulated categories and generalized Auslander-Reiten theory
    Zhang, Yaohua
    Zhu, Bin
    JOURNAL OF ALGEBRA, 2024, 644 : 191 - 221