Theorems on Large Deviations for Randomly Indexed Sum of Weighted Random Variables

被引:0
|
作者
Aurelija Kasparavičiūtė
Leonas Saulis
机构
[1] Vilnius Gediminas Technical University,
来源
关键词
Characteristic function; Cumulant; Large deviations; Compound Poisson process; Normal approximation; Random number of summands; 60F10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a random variable \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Z_{t}=\sum_{i=1}^{N_{t}}a_{i}X_{i}$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X, X_{1}, X_{2}, \ldots$\end{document} are independent identically distributed random variables with mean EX=μ and variance DX=σ2>0. It is assumed that Z0=0, 0≤ai<∞, and Nt, t≥0 is a non-negative integer-valued random variable independent of Xi, i=1,2,… . The paper is devoted to the analysis of accuracy of the standard normal approximation to the sum \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde{Z}_{t}=(\mathbf{D}Z_{t})^{-1/2}(Z_{t}-\mathbf{E}Z_{t})$\end{document}, large deviation theorems in the Cramer and power Linnik zones, and exponential inequalities for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbf{P}(\tilde{Z}_{t}\geq x)$\end{document}.
引用
收藏
页码:255 / 267
页数:12
相关论文
共 50 条
  • [21] Large deviations for a Poisson random indexed branching process
    Gao, Zhenlong
    Wang, Weigang
    STATISTICS & PROBABILITY LETTERS, 2015, 105 : 143 - 148
  • [22] On small deviations of series of weighted random variables
    Borovkov, A. A.
    Ruzankin, P. S.
    JOURNAL OF THEORETICAL PROBABILITY, 2008, 21 (03) : 628 - 649
  • [23] Large deviations of Markov chains indexed by random trees
    Dembo, A
    Mörters, P
    Sheffield, S
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2005, 41 (06): : 971 - 996
  • [24] A supplement to the large deviations of infinite weighted sums of heavy tailed random variables
    Shi, Jianan
    Yu, Zhenhong
    Miao, Yu
    STATISTICS & PROBABILITY LETTERS, 2025, 217
  • [25] Large deviations for weighted random sums
    Kasparaviciute, Aurelija
    Saulis, Leonas
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2013, 18 (02): : 129 - 142
  • [26] Large deviations of sums of random variables
    Andrew Granville
    Youness Lamzouri
    Lithuanian Mathematical Journal, 2021, 61 : 345 - 372
  • [27] Elementary renewal theorems for widely dependent random variables with applications to precise large deviations
    Wang, Yuebao
    Cheng, Dongya
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (14) : 3352 - 3374
  • [28] LIMIT-THEOREMS IN THE AREA OF LARGE DEVIATIONS FOR SOME DEPENDENT RANDOM-VARIABLES
    CHAGANTY, NR
    SETHURAMAN, J
    ANNALS OF PROBABILITY, 1987, 15 (02): : 628 - 645
  • [29] Theorems of large deviations for sums of random variables connected in a Markov chain. II
    Padvelskis K.
    Statulevičius V.
    Lithuanian Mathematical Journal, 1999, 39 (1) : 64 - 85
  • [30] Large deviations of sums of random variables
    Granville, Andrew
    Lamzouri, Youness
    LITHUANIAN MATHEMATICAL JOURNAL, 2021, 61 (03) : 345 - 372