Large deviations of sums of random variables

被引:0
|
作者
Granville, Andrew [1 ,2 ]
Lamzouri, Youness [3 ]
机构
[1] Univ Montreal, Dept Math & Stat, CP 6128 Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada
[2] UCL, Dept Math, Gower St, London WC1E 6BT, England
[3] Univ Lorraine, Inst Elie Cartan Lorraine, BP 70239, F-54506 Vandoeuvre Les Nancy, France
基金
加拿大自然科学与工程研究理事会; 欧洲研究理事会;
关键词
zeta functions; distributions; moment generating function; VALUES;
D O I
10.1007/s10986-021-09530-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the large deviations of sums of weighted random variables that are approximately independent, generalizing and improving some results of Montgomery and Odlyzko. We are motivated by examples arising from number theory, including the sequences p(it), chi(p), chi(d)(p), lambda(f) (p), and Kl(q)(a - n, b), where p ranges over the primes, t varies in a large interval, chi varies among all characters modulo q, chi(d) varies over quadratic characters attached to fundamental discriminants |d| <= x, lambda(f) (n) are the Fourier coefficients of holomorphic cusp forms f of (a large) weight k for the full modular group, and Kl(q)(a, b) are the normalized Kloosterman sums modulo a large prime q, where a, b vary in (Fxdd3d;(q))(x).
引用
收藏
页码:345 / 372
页数:28
相关论文
共 50 条