Edge ideals with almost maximal finite index and their powers

被引:0
|
作者
Mina Bigdeli
机构
[1] Institute for Research in Fundamental Sciences (IPM),School of Mathematics
来源
关键词
Edge ideal; Graph; Index; Linear resolution; Projective dimension; Regularity; Primary 13D02; 13C13; Secondary 05E40; 05C75;
D O I
暂无
中图分类号
学科分类号
摘要
A graded ideal I in K[x1,…,xn]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {K}[x_1,\ldots ,x_n]$$\end{document}, where K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {K}$$\end{document} is a field, is said to have almost maximal finite index if its minimal free resolution is linear up to the homological degree pd(I)-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {pd}(I)-2$$\end{document}, while it is not linear at the homological degree pd(I)-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {pd}(I)-1$$\end{document}, where pd(I)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {pd}(I)$$\end{document} denotes the projective dimension of I. In this paper, we classify the graphs whose edge ideals have this property. This in particular shows that for edge ideals the property of having almost maximal finite index does not depend on the characteristic of K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {K}$$\end{document}. We also compute the nonlinear Betti numbers of these ideals. Finally, we show that for the edge ideal I of a graph G with almost maximal finite index, the ideal Is\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I^s$$\end{document} has a linear resolution for s≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\ge 2$$\end{document} if and only if the complementary graph G¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{G}$$\end{document} does not contain induced cycles of length 4.
引用
收藏
页码:947 / 978
页数:31
相关论文
共 50 条
  • [1] Edge ideals with almost maximal finite index and their powers
    Bigdeli, Mina
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 54 (03) : 947 - 978
  • [2] On the index of powers of edge ideals
    Bigdeli, Mina
    Herzog, Juergen
    Zaare-Nahandi, Rashid
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (03) : 1080 - 1095
  • [3] Almost Gorenstein Rees Algebras of pg-Ideals, Good Ideals, and Powers of the Maximal Ideals
    Goto, Shiro
    Matsuoka, Naoyuki
    Taniguchi, Naoki
    Yoshida, Ken-Ichi
    MICHIGAN MATHEMATICAL JOURNAL, 2018, 67 (01) : 159 - 174
  • [4] POWERS OF EDGE IDEALS
    Ferro, Carmela
    Murgia, Mariella
    Olteanu, Oana
    MATEMATICHE, 2012, 67 (01): : 129 - 144
  • [5] MAXIMAL IDEALS WITH CLOSED POWERS
    READ, TT
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (02): : 396 - &
  • [6] ON ALMOST MAXIMAL RIGHT IDEALS
    KOH, K
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 25 (02) : 266 - &
  • [7] ALMOST MAXIMAL-IDEALS
    JOHNSTONE, PT
    FUNDAMENTA MATHEMATICAE, 1984, 123 (03) : 197 - 209
  • [8] ON THE POWERS OF MAXIMAL IDEALS IN THE MEASURE ALGEBRA
    Szekelyhidi, Laszlo
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2016, 10 (02): : 385 - 399
  • [9] PRIME IDEALS YIELD ALMOST MAXIMAL-IDEALS
    BLASS, A
    FUNDAMENTA MATHEMATICAE, 1987, 127 (01) : 57 - 66
  • [10] Polarizations of powers of graded maximal ideals
    Almousa, Ayah
    Floystad, Gunnar
    Lohne, Henning
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (05)