Bilevel programming and price setting problems

被引:0
|
作者
Martine Labbé
Alessia Violin
机构
[1] Université Libre de Bruxelles,Départment d’Informatique
来源
4OR | 2013年 / 11卷
关键词
Bilevel programming; Pricing; Networks; Combinatorial optimization; Stackelberg game; 90-01; 90B06; 90B10; 90C11; 90C35; 90C57; 90C90; 91A65; 91A80;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to pricing optimization problems which can be modeled as bilevel programs. We present the main concepts, models and solution methods for this class of optimization problems.
引用
收藏
页码:1 / 30
页数:29
相关论文
共 50 条
  • [41] Exact penalty functions for convex bilevel programming problems
    Liu, GS
    Han, JY
    Zhang, JZ
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2001, 110 (03) : 621 - 643
  • [42] A Trust Region Algorithm for Solving Bilevel Programming Problems
    Guoshan LIU
    Shiqin XU
    Jiye HAN
    Acta Mathematicae Applicatae Sinica(English Series), 2013, 29 (03) : 491 - 498
  • [43] An Objective Penalty Method for Optimistic Bilevel Programming Problems
    Liu, June
    Zhang, Tao
    Fan, Yu-Xin
    Han, Bing
    Zheng, Yue
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2020, 8 (01) : 177 - 187
  • [44] New partial cooperation model for bilevel programming problems
    Jia, Shihui
    Wan, Zhongping
    Feng, Yuqiang
    Wang, Guangmin
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2011, 22 (02) : 263 - 266
  • [45] A solution approach to the weak linear bilevel programming problems
    Zheng, Yue
    Fang, Debin
    Wan, Zhongping
    OPTIMIZATION, 2016, 65 (07) : 1437 - 1449
  • [46] Bilevel stochastic linear programming problems with quantile criterion
    Ivanov, S. V.
    AUTOMATION AND REMOTE CONTROL, 2014, 75 (01) : 107 - 118
  • [47] Constraint qualifications and KKT conditions for bilevel programming problems
    Ye, Jane J.
    MATHEMATICS OF OPERATIONS RESEARCH, 2006, 31 (04) : 811 - 824
  • [48] A class of integer linear fractional bilevel programming problems
    Sharma, Vikas
    Dahiya, Kalpana
    Verma, Vanita
    OPTIMIZATION, 2014, 63 (10) : 1565 - 1581
  • [49] ON ONE OPTIMALITY CONDITION FOR BILEVEL PROGRAMMING-PROBLEMS
    DEMPE, S
    VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA MATEMATIKA MEKHANIKA ASTRONOMIYA, 1989, (03): : 10 - 14
  • [50] New partial cooperation model for bilevel programming problems
    Shihui Jia1
    2. Hubei Province Key Laboratory of Systems Science in Metallurgical Process
    3. Mathematics Department
    Journal of Systems Engineering and Electronics, 2011, 22 (02) : 263 - 266