Bilevel programming and price setting problems

被引:0
|
作者
Martine Labbé
Alessia Violin
机构
[1] Université Libre de Bruxelles,Départment d’Informatique
来源
4OR | 2013年 / 11卷
关键词
Bilevel programming; Pricing; Networks; Combinatorial optimization; Stackelberg game; 90-01; 90B06; 90B10; 90C11; 90C35; 90C57; 90C90; 91A65; 91A80;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to pricing optimization problems which can be modeled as bilevel programs. We present the main concepts, models and solution methods for this class of optimization problems.
引用
下载
收藏
页码:1 / 30
页数:29
相关论文
共 50 条
  • [31] A Duality Approach for a Class of Semivectorial Bilevel Programming Problems
    Aboussoror, Abdelmalek
    Adly, Samir
    Saissi, Fatima Ezzahra
    VIETNAM JOURNAL OF MATHEMATICS, 2018, 46 (01) : 197 - 214
  • [32] Application of discrete bilevel programming to some applied problems
    Dempe, S
    Kalashnikov, V
    Terashima, H
    PROCEEDINGS OF THE FOURTH MEXICAN INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE (ENC 2003), 2003, : 254 - 262
  • [33] Bilevel stochastic linear programming problems with quantile criterion
    S. V. Ivanov
    Automation and Remote Control, 2014, 75 : 107 - 118
  • [34] A hybrid neural network approach to bilevel programming problems
    Lan, Kuen-Ming
    Wen, Ue-Pyng
    Shih, Hsu-Shih
    Lee, E. Stanley
    APPLIED MATHEMATICS LETTERS, 2007, 20 (08) : 880 - 884
  • [35] Bilevel programming as a means of infinite weighting in regression problems
    Andersen, Joakim R.
    Imsland, Lars
    IFAC PAPERSONLINE, 2022, 55 (07): : 851 - 856
  • [36] Research on Problems Bilevel Programming for Personnel Allocation in Enterprise
    Li Lei
    Xiao Guang-nian
    Li Chen-xin
    2010 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING (ICMSE), 2010, : 293 - 298
  • [37] On the convergence of the algorithm for bilevel programming problems by Clegg and Smith
    Cohen, G
    Quadrat, JP
    Wynter, L
    TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2002, 36 (10) : 939 - 944
  • [38] Transport bilevel programming problems: recent methodological advances
    Yang, H
    Bell, MGH
    TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2001, 35 (01) : 1 - 4
  • [39] A global optimization method for nonlinear bilevel programming problems
    Amouzegar, MA
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1999, 29 (06): : 771 - 777
  • [40] Test problem construction for linear bilevel programming problems
    Moshirvaziri, K
    Amouzegar, MA
    Jacobsen, SE
    JOURNAL OF GLOBAL OPTIMIZATION, 1996, 8 (03) : 235 - 243