Virial theorem for the anisotropic Ginzburg-Landau theory

被引:7
|
作者
Doria, MM [1 ]
deAndrade, SCB [1 ]
机构
[1] PONTIFICIA UNIV CATOLICA RIO DE JANEIRO, DEPT FIS, BR-22452970 RIO DE JANEIRO, RJ, BRAZIL
关键词
D O I
10.1103/PhysRevB.53.3440
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The scalar virial theorem for the Ginzburg-Landau theory is generalized to a vector virial theorem and follows from similar scaling properties of the Gibbs free-energy density. All the components of the magnetic field H are determined in terms of average values of the kinetic and field tensor components of the Helmholtz free-energy density. We consider two frames, the crystal's and the magnetic induction's B, where the scaling properties yield useful relations due to anisotropy. In the last case the scaling relations do not completely determine H; instead, they provide useful identities that reflect collective properties of the vortex state. We compare both the scaling and the thermodynamic methods for the particular case of straight tilted parallel vortex lines in the London limit.
引用
收藏
页码:3440 / 3454
页数:15
相关论文
共 50 条
  • [21] Singular limits of anisotropic Ginzburg-Landau functional
    Xing-Bin Pan
    Journal of Elliptic and Parabolic Equations, 2020, 6 : 27 - 54
  • [22] ON THE BIFURCATION THEORY OF THE GINZBURG-LANDAU EQUATIONS
    Nagy, Akos
    Oliveria, Goncalo
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (02) : 653 - 664
  • [23] MICROSCOPIC DERIVATION OF GINZBURG-LANDAU THEORY
    Frank, Rupert L.
    Hainzl, Christian
    Seiringer, Robert
    Solovej, Jan Philip
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 25 (03) : 667 - 713
  • [24] Ginzburg-Landau theory of noncentrosymmetric superconductors
    Mukherjee, Soumya P.
    Mandal, Sudhansu S.
    PHYSICAL REVIEW B, 2008, 77 (01)
  • [25] Symplectic representation of the Ginzburg-Landau theory
    Reis, E. A.
    Petronilo, G. X. A.
    Amorim, R. G. G.
    Belich, H.
    Khanna, F. C.
    Santana, A. E.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2024, 39 (24):
  • [26] Nonlocal Ginzburg-Landau theory for superconductors
    Koyama, T.
    Machida, M.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2013, 484 : 100 - 103
  • [28] Nonabelian Ginzburg-Landau theory for ferroelectrics
    Li, You-Quan
    Wang, Pei
    Zhang, Hua
    Zhang, Hong
    Fu, Li-Bin
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2023, 35 (15)
  • [29] GINZBURG-LANDAU THEORY OF DEFORMABLE SUPERCONDUCTORS
    SVENSMARK, H
    FALICOV, LM
    PHYSICAL REVIEW B, 1989, 40 (01): : 201 - 209
  • [30] Ginzburg-Landau theory of a holographic superconductor
    Yin, Lei
    Hou, Defu
    Ren, Hai-cang
    PHYSICAL REVIEW D, 2015, 91 (02):