Symplectic representation of the Ginzburg-Landau theory

被引:0
|
作者
Reis, E. A. [1 ,2 ]
Petronilo, G. X. A. [1 ,3 ]
Amorim, R. G. G. [1 ,4 ,8 ]
Belich, H. [5 ]
Khanna, F. C. [6 ,7 ]
Santana, A. E. [1 ]
机构
[1] Univ Brasilia, Int Ctr Phys, Inst Fis, BR-70910900 Brasilia, DF, Brazil
[2] Univ Fed Oeste Bahia, Ctr Ciencias Exatas & Tecnol, BR-47808021 Barreiras, BA, Brazil
[3] Latin Amer Quantum Comp Ctr, BR-41650010 Salvador, BA, Brazil
[4] Univ Brasilia, Gamma Fac, Dept Phys, Brasilia, DF, Brazil
[5] Univ Fed Espirito St, Ctr Ciencias Exatas, BR-29060900 Vitoria, ES, Brazil
[6] Univ Alberta, Theoret Phys Inst, Phys Dept, Edmonton, AB T6G 2J1, Canada
[7] TRIUMF, 4004 Westbrook Mall, Vancouver, BC V6T 2A3, Canada
[8] Canadian Quantum Res Ctr, 204-3002 32 Ave Vernon, Vernon VIT 2L7, BC, Canada
来源
关键词
Thermo-Euclidian group; Ginzburg-Landau theory; phase space;
D O I
10.1142/S0217751X24500957
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
In this work, the Ginzburg-Landau theory is represented on a symplectic manifold with a phase space content. The order parameter is defined by a quasi-probability amplitude, which gives rise to a quasi-probability distribution function, i.e. a Wigner-type function. The starting point is the thermal group representation of Euclidean symmetries and gauge symmetry. Well-known basic results on the behavior of a superconductor are re-derived, providing the consistency of representation. The critical superconducting current density is determined and its usual behavior is inferred. The negativity factor associated with the quasi-distribution function is analyzed, providing information about the nonclassicality nature of the superconductor state in the region closest to the edge of the superconducting material.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Ginzburg-Landau theory of a supersolid
    Ye, Jinwu
    PHYSICAL REVIEW LETTERS, 2006, 97 (12)
  • [2] GINZBURG-LANDAU THEORY FOR SUPERCONDUCTORS
    CYROT, M
    REPORTS ON PROGRESS IN PHYSICS, 1973, 36 (02) : 103 - 158
  • [3] The Ginzburg-Landau theory in application
    Milosevic, M. V.
    Geurts, R.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2010, 470 (19): : 791 - 795
  • [4] INTERMITTENCY IN THE GINZBURG-LANDAU THEORY
    HWA, RC
    PAN, J
    PHYSICS LETTERS B, 1992, 297 (1-2) : 35 - 38
  • [5] ON THE BIFURCATION THEORY OF THE GINZBURG-LANDAU EQUATIONS
    Nagy, Akos
    Oliveria, Goncalo
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (02) : 653 - 664
  • [6] MICROSCOPIC DERIVATION OF GINZBURG-LANDAU THEORY
    Frank, Rupert L.
    Hainzl, Christian
    Seiringer, Robert
    Solovej, Jan Philip
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 25 (03) : 667 - 713
  • [7] Ginzburg-Landau theory of noncentrosymmetric superconductors
    Mukherjee, Soumya P.
    Mandal, Sudhansu S.
    PHYSICAL REVIEW B, 2008, 77 (01)
  • [8] Nonlocal Ginzburg-Landau theory for superconductors
    Koyama, T.
    Machida, M.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2013, 484 : 100 - 103
  • [10] Nonabelian Ginzburg-Landau theory for ferroelectrics
    Li, You-Quan
    Wang, Pei
    Zhang, Hua
    Zhang, Hong
    Fu, Li-Bin
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2023, 35 (15)