Symplectic representation of the Ginzburg-Landau theory

被引:0
|
作者
Reis, E. A. [1 ,2 ]
Petronilo, G. X. A. [1 ,3 ]
Amorim, R. G. G. [1 ,4 ,8 ]
Belich, H. [5 ]
Khanna, F. C. [6 ,7 ]
Santana, A. E. [1 ]
机构
[1] Univ Brasilia, Int Ctr Phys, Inst Fis, BR-70910900 Brasilia, DF, Brazil
[2] Univ Fed Oeste Bahia, Ctr Ciencias Exatas & Tecnol, BR-47808021 Barreiras, BA, Brazil
[3] Latin Amer Quantum Comp Ctr, BR-41650010 Salvador, BA, Brazil
[4] Univ Brasilia, Gamma Fac, Dept Phys, Brasilia, DF, Brazil
[5] Univ Fed Espirito St, Ctr Ciencias Exatas, BR-29060900 Vitoria, ES, Brazil
[6] Univ Alberta, Theoret Phys Inst, Phys Dept, Edmonton, AB T6G 2J1, Canada
[7] TRIUMF, 4004 Westbrook Mall, Vancouver, BC V6T 2A3, Canada
[8] Canadian Quantum Res Ctr, 204-3002 32 Ave Vernon, Vernon VIT 2L7, BC, Canada
来源
关键词
Thermo-Euclidian group; Ginzburg-Landau theory; phase space;
D O I
10.1142/S0217751X24500957
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
In this work, the Ginzburg-Landau theory is represented on a symplectic manifold with a phase space content. The order parameter is defined by a quasi-probability amplitude, which gives rise to a quasi-probability distribution function, i.e. a Wigner-type function. The starting point is the thermal group representation of Euclidean symmetries and gauge symmetry. Well-known basic results on the behavior of a superconductor are re-derived, providing the consistency of representation. The critical superconducting current density is determined and its usual behavior is inferred. The negativity factor associated with the quasi-distribution function is analyzed, providing information about the nonclassicality nature of the superconductor state in the region closest to the edge of the superconducting material.
引用
收藏
页数:18
相关论文
共 50 条
  • [11] GINZBURG-LANDAU THEORY OF DEFORMABLE SUPERCONDUCTORS
    SVENSMARK, H
    FALICOV, LM
    PHYSICAL REVIEW B, 1989, 40 (01): : 201 - 209
  • [12] Ginzburg-Landau theory of a holographic superconductor
    Yin, Lei
    Hou, Defu
    Ren, Hai-cang
    PHYSICAL REVIEW D, 2015, 91 (02):
  • [13] Phenomenological Ginzburg-Landau theory for supersolidity
    Rica, Sergio
    PHYSICAL REVIEW B, 2011, 84 (18)
  • [14] Size effects in the Ginzburg-Landau theory
    Fiolhais, Miguel C. N.
    Birman, Joseph L.
    SOLID STATE COMMUNICATIONS, 2015, 203 : 51 - 53
  • [15] Weyl symmetric representation of hadronic flux tubes in the dual Ginzburg-Landau theory
    Koma, Y
    Ilgenfritz, EM
    Suzuki, T
    Toki, H
    PHYSICAL REVIEW D, 2001, 64 (01)
  • [16] GENERALIZED GINZBURG-LANDAU THEORY OF SUPERCONDUCTING ALLOYS
    TEWORDT, L
    PHYSICAL REVIEW, 1965, 137 (6A): : 1745 - +
  • [17] On the role of the boundary conditions in the Ginzburg-Landau theory
    Bezotosnyi, P. I.
    Gavrilkin, S. Yu.
    Lykov, A. N.
    Tsvetkov, A. Yu.
    BULLETIN OF THE LEBEDEV PHYSICS INSTITUTE, 2014, 41 (06) : 153 - 159
  • [18] Virial theorem for the anisotropic Ginzburg-Landau theory
    Doria, MM
    deAndrade, SCB
    PHYSICAL REVIEW B, 1996, 53 (06) : 3440 - 3454
  • [19] On the role of the boundary conditions in the Ginzburg-Landau theory
    P. I. Bezotosnyi
    S. Yu. Gavrilkin
    A. N. Lykov
    A. Yu. Tsvetkov
    Bulletin of the Lebedev Physics Institute, 2014, 41 : 153 - 159
  • [20] Ginzburg-Landau theory of mixed wave superconductors
    Wang, ZD
    Li, Q
    Wang, QH
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1999, 13 (29-31): : 3569 - 3572