INTERMITTENCY IN THE GINZBURG-LANDAU THEORY

被引:26
|
作者
HWA, RC [1 ]
PAN, J [1 ]
机构
[1] UNIV OREGON,DEPT PHYS,EUGENE,OR 97403
关键词
D O I
10.1016/0370-2693(92)91065-H
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
An earlier investigation of the properties of multiplicity fluctuations in the Ginzburg-Landau theory of second-order phase transition is extended to include the kinetic term. A scaling law is found to be well satisfied with very weak dependence on the coefficients of the GL potential. The exponent nu is found to be 1. 316 +/- 0.012, which is a universal characterization of the phase transition process.
引用
收藏
页码:35 / 38
页数:4
相关论文
共 50 条
  • [1] Ginzburg-Landau theory of a supersolid
    Ye, Jinwu
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (12)
  • [2] The Ginzburg-Landau theory in application
    Milosevic, M. V.
    Geurts, R.
    [J]. PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2010, 470 (19): : 791 - 795
  • [3] GINZBURG-LANDAU THEORY FOR SUPERCONDUCTORS
    CYROT, M
    [J]. REPORTS ON PROGRESS IN PHYSICS, 1973, 36 (02) : 103 - 158
  • [4] NOISE-SUSTAINED STRUCTURE, INTERMITTENCY, AND THE GINZBURG-LANDAU EQUATION
    DEISSLER, RJ
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1985, 40 (3-4) : 371 - 395
  • [5] NOISE-SUSTAINED STRUCTURE, INTERMITTENCY, AND THE GINZBURG-LANDAU EQUATION
    DEISSLER, RJ
    [J]. PHYSICA D, 1986, 18 (1-3): : 467 - 468
  • [6] ON THE BIFURCATION THEORY OF THE GINZBURG-LANDAU EQUATIONS
    Nagy, Akos
    Oliveria, Goncalo
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (02) : 653 - 664
  • [7] MICROSCOPIC DERIVATION OF GINZBURG-LANDAU THEORY
    Frank, Rupert L.
    Hainzl, Christian
    Seiringer, Robert
    Solovej, Jan Philip
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 25 (03) : 667 - 713
  • [8] Ginzburg-Landau theory of noncentrosymmetric superconductors
    Mukherjee, Soumya P.
    Mandal, Sudhansu S.
    [J]. PHYSICAL REVIEW B, 2008, 77 (01)
  • [9] Nonlocal Ginzburg-Landau theory for superconductors
    Koyama, T.
    Machida, M.
    [J]. PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2013, 484 : 100 - 103
  • [10] Nonabelian Ginzburg-Landau theory for ferroelectrics
    Li, You-Quan
    Wang, Pei
    Zhang, Hua
    Zhang, Hong
    Fu, Li-Bin
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2023, 35 (15)